Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Ill-posed problem Related Publications

3 In Search of Robustness and Efficiency via l1− and l2− Regularized Optimization for Physiological Motion Compensation

Authors: Angelica I. Aviles, Pilar Sobrevilla, Alicia Casals

Abstract:

Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of 1−and 2−regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the 1−regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.

Keywords: Optimization, regularization, motion compensation, Ill-posed problem, Beating Heart Surgery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
2 Identifying an Unknown Source in the Poisson Equation by a Modified Tikhonov Regularization Method

Authors: Ou Xie, Zhenyu Zhao

Abstract:

In this paper, we consider the problem for identifying the unknown source in the Poisson equation. A modified Tikhonov regularization method is presented to deal with illposedness of the problem and error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. Numerical examples show that the proposed method is effective and stable.

Keywords: Poisson equation, Tikhonov regularization method, Ill-posed problem, Unknown source, Discrepancy principle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151
1 Fourier Spectral Method for Analytic Continuation

Authors: Zhenyu Zhao, Lei You

Abstract:

The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. The data are only given approximately on the real axis. The periodicity of given data is assumed. A truncated Fourier spectral method has been introduced to deal with the ill-posedness of the problem. The theoretic results show that the discrepancy principle can work well for this problem. Some numerical results are also given to show the efficiency of the method.

Keywords: Ill-posed problem, Analytic continuation, regularization method Fourier spectral method, the discrepancy principle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171