Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12

Hopf Bifurcation Related Publications

12 Periodic Orbits in a Delayed Nicholson's Blowflies Model

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, a delayed Nicholson,s blowflies model with a linear harvesting term is investigated. Regarding the delay as a bifurcation parameter, we show that Hopf bifurcation will occur when the delay crosses a critical value. Numerical simulations supporting the theoretical findings are carried out.

Keywords: Stability, Hopf Bifurcation, delay, Nicholson's blowflies model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
11 Periodic Oscillations in a Delay Population Model

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, a nonlinear delay population model is investigated. Choosing the delay as a bifurcation parameter, we demonstrate that Hopf bifurcation will occur when the delay exceeds a critical value. Global existence of bifurcating periodic solutions is established. Numerical simulations supporting the theoretical findings are included.

Keywords: Stability, Hopf Bifurcation, delay, Population model, Global Hopf bifurcation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
10 Dynamics and Feedback Control for a New Hyperchaotic System

Authors: Kejun Zhuang, Hailong Zhu

Abstract:

In this paper, stability and Hopf bifurcation analysis of a novel hyperchaotic system are investigated. Four feedback control strategies, the linear feedback control method, enhancing feedback control method, speed feedback control method and delayed feedback control method, are used to control the hyperchaotic attractor to unstable equilibrium. Moreover numerical simulations are given to verify the theoretical results.

Keywords: Stability, Hopf Bifurcation, Feedback Control, hyperchaotic system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
9 Bifurcations of a Delayed Prototype Model

Authors: Changjin Xu

Abstract:

In this paper, a delayed prototype model is studied. Regarding the delay as a bifurcation parameter, we prove that a sequence of Hopf bifurcations will occur at the positive equilibrium when the delay increases. Using the normal form method and center manifold theory, some explicit formulae are worked out for determining the stability and the direction of the bifurcated periodic solutions. Finally, Computer simulations are carried out to explain some mathematical conclusions.

Keywords: Stability, Hopf Bifurcation, delay, periodic solution, Prototype model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
8 HOPF Bifurcation of a Predator-prey Model with Time Delay and Habitat Complexity

Authors: Li Hongwei

Abstract:

In this paper, a predator-prey model with time delay and habitat complexity is investigated. By analyzing the characteristic equations, the local stability of each feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By choosing the sum of two delays as a bifurcation parameter, we show that Hopf bifurcations can occur as  crosses some critical values. By deriving the equation describing the flow on the center manifold, we can determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main theoretical results.

Keywords: Hopf Bifurcation, delay, habitat complexity, Predator-prey system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
7 Stability and HOPF Bifurcation Analysis in a Stage-structured Predator-prey system with Two Time Delays

Authors: Meng Hu, Yongkun Li

Abstract:

A stage-structured predator-prey system with two time delays is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated and the existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results. Based on the global Hopf bifurcation theorem for general functional differential equations, the global existence of periodic solutions is established.

Keywords: Stability, Hopf Bifurcation, Time Delay, periodic solution, Predator-prey system, Stage structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
6 Bifurcation Analysis of a Delayed Predator-prey Fishery Model with Prey Reserve in Frequency Domain

Authors: Changjin Xu

Abstract:

In this paper, applying frequency domain approach, a delayed predator-prey fishery model with prey reserve is investigated. By choosing the delay τ as a bifurcation parameter, It is found that Hopf bifurcation occurs as the bifurcation parameter τ passes a sequence of critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. The length of delay which preserves the stability of the positive equilibrium is calculated. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.

Keywords: Stability, Hopf Bifurcation, frequency domain, predator-prey model, Nyquist criterion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
5 Hopf Bifurcation for a New Chaotic System

Authors: Kejun Zhuang

Abstract:

In this paper, a three dimensional autonomous chaotic system is considered. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived with the help of normal form theory. Finally, a numerical example is given.

Keywords: Hopf Bifurcation, chaotic system, normal form theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
4 Stability and Bifurcation Analysis in a Model of Hes1 Selfregulation with Time Delay

Authors: Kejun Zhuang, Hailong Zhu

Abstract:

The dynamics of a delayed mathematical model for Hes1 oscillatory expression are investigated. The linear stability of positive equilibrium and existence of local Hopf bifurcation are studied. Moreover, the global existence of large periodic solutions has been established due to the global bifurcation theorem.

Keywords: Hopf Bifurcation, Time Delay, Hes1, transcriptional repression loop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027
3 Hopf Bifurcation Analysis for a Delayed Predator–prey System with Stage Structure

Authors: Kejun Zhuang

Abstract:

In this paper, a delayed predator–prey system with stage structure is investigated. Sufficient conditions for the system to have multiple periodic solutions are obtained when the delay is sufficiently large by applying Bendixson-s criterion. Further, some numerical examples are given.

Keywords: Hopf Bifurcation, Predator-prey system, Stage structure, Periodic solutions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
2 Bifurcation Analysis in a Two-neuron System with Different Time Delays

Authors: Changjin Xu

Abstract:

In this paper, we consider a two-neuron system with time-delayed connections between neurons. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulation results are given to support the theoretical predictions. Finally, main conclusions are given.

Keywords: Stability, Hopf Bifurcation, delay, Two-neuron system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
1 Transmission Model for Plasmodium Vivax Malaria: Conditions for Bifurcation

Authors: P. Pongsumpun, I.M. Tang

Abstract:

Plasmodium vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax infection can suffer relapses of the disease. This is due the parasite being able to remain dormant in the liver of the patients where it is able to re-infect the patient after a passage of time. During this stage, the patient is classified as being in the dormant class. The model to describe the transmission of P. vivax malaria consists of a human population divided into four classes, the susceptible, the infected, the dormant and the recovered. The effect of a time delay on the transmission of this disease is studied. The time delay is the period in which the P. vivax parasite develops inside the mosquito (vector) before the vector becomes infectious (i.e., pass on the infection). We analyze our model by using standard dynamic modeling method. Two stable equilibrium states, a disease free state E0 and an endemic state E1, are found to be possible. It is found that the E0 state is stable when a newly defined basic reproduction number G is less than one. If G is greater than one the endemic state E1 is stable. The conditions for the endemic equilibrium state E1 to be a stable spiral node are established. For realistic values of the parameters in the model, it is found that solutions in phase space are trajectories spiraling into the endemic state. It is shown that the limit cycle and chaotic behaviors can only be achieved with unrealistic parameter values.

Keywords: Hopf Bifurcation, Time Delay, local stability, plasmodium vivax, Equilibrium states, limit cyclebehavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877