Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Hilbert-Huang transform Related Publications

4 Method of Intelligent Fault Diagnosis of Preload Loss for Single Nut Ball Screws through the Sensed Vibration Signals

Authors: Yi-Cheng Huang, Yan-Chen Shin

Abstract:

This paper proposes method of diagnosing ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process. The proposed method can diagnose ball screw preload loss through vibration signals when the machine tool is in operation. Maximum dynamic preload of 2 %, 4 %, and 6 % ball screws were predesigned, manufactured, and tested experimentally. Signal patterns are discussed and revealed using Empirical Mode Decomposition(EMD)with the Hilbert Spectrum. Different preload features are extracted and discriminated using HHT. The irregularity development of a ball screw with preload loss is determined and abstracted using MSE based on complexity perception. Experiment results show that the proposed method can predict the status of ball screw preload loss. Smart sensing for the health of the ball screw is also possible based on a comparative evaluation of MSE by the signal processing and pattern matching of EMD/HHT. This diagnosis method realizes the purposes of prognostic effectiveness on knowing the preload loss and utilizing convenience.

Keywords: empirical mode decomposition, multi-scale entropy, Hilbert-Huang transform, Preload Loss, Single-nut Ball Screw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
3 Analysis of Vibration Signal of DC Motor Based on Hilbert-Huang Transform

Authors: Chun-Yao Lee, Hung-Chi Lin

Abstract:

This paper presents a signal analysis process for improving energy completeness based on the Hilbert-Huang Transform (HHT). Firstly, the vibration signal of a DC Motor obtained by employing an accelerometer is the model used to analyze the signal. Secondly, the intrinsic mode functions (IMFs) and Hilbert spectrum of the decomposed signal are obtained by applying HHT. The results of the IMFs constituent and the original signal are compared and the process of energy loss is discussed. Finally, the differences between Wavelet Transform (WT) and HHT in analyzing the signal are compared. The simulated results reveal the analysis process based on HHT is advantageous for the enhancement of energy completeness.

Keywords: DC motor, wavelettransform, Hilbert spectrum, Hilbert-Huang transform, Wavelet spectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
2 BPNN Based Processing for End Effects of HHT

Authors: Chun-Yao Lee, Yao-chen Lee

Abstract:

This paper describes a method of signal process applied on an end effects of Hilbert-Huang transform (HHT) to provide an improvement in the reality of spectrum. The method is based on back-propagation network (BPN). To improve the effect, the end extension of the original signal is obtained by back-propagation network. A full waveform including origin and its extension is decomposed by using empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) of the waveform. Then, the Hilbert transform (HT) is applied to the IMFs to obtain the Hilbert spectrum of the waveform. As a result, the method is superiority of the processing of end effect of HHT to obtain the real frequency spectrum of signals.

Keywords: Neural Network, Hilbert-Huang transform, back-propagation network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
1 Harmonic Parameters with HHT and Wavelet Transform for Automatic Sleep Stages Scoring

Authors: Wei-Chih Tang, Shih-Wei Lu, Chih-Mong Tsai, Cheng-Yan Kao, Hsiu-Hui Lee

Abstract:

Previously, harmonic parameters (HPs) have been selected as features extracted from EEG signals for automatic sleep scoring. However, in previous studies, only one HP parameter was used, which were directly extracted from the whole epoch of EEG signal. In this study, two different transformations were applied to extract HPs from EEG signals: Hilbert-Huang transform (HHT) and wavelet transform (WT). EEG signals are decomposed by the two transformations; and features were extracted from different components. Twelve parameters (four sets of HPs) were extracted. Some of the parameters are highly diverse among different stages. Afterward, HPs from two transformations were used to building a rough sleep stages scoring model using the classifier SVM. The performance of this model is about 78% using the features obtained by our proposed extractions. Our results suggest that these features may be useful for automatic sleep stages scoring.

Keywords: eeg, Wavelet Transform, harmonic parameter, Hilbert-Huang transform, sleep stages

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471