Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Hamiltonian Related Publications

7 On Chvátal’s Conjecture for the Hamiltonicity of 1-Tough Graphs and Their Complements

Authors: Shin-Shin Kao, Yuan-Kang Shih, Hsun Su

Abstract:

In this paper, we show that the conjecture of Chv tal, which states that any 1-tough graph is either a Hamiltonian graph or its complement contains a specific graph denoted by F, does not hold in general. More precisely, it is true only for graphs with six or seven vertices, and is false for graphs with eight or more vertices. A theorem is derived as a correction for the conjecture.

Keywords: Hamiltonian, complement, degree sum, tough

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
6 Mutually Independent Hamiltonian Cycles of Cn x Cn

Authors: Kai-Siou Wu, Justie Su-Tzu Juan

Abstract:

In a graph G, a cycle is Hamiltonian cycle if it contain all vertices of G. Two Hamiltonian cycles C_1 = ⟨u_0, u_1, u_2, ..., u_{n−1}, u_0⟩ and C_2 = ⟨v_0, v_1, v_2, ..., v_{n−1}, v_0⟩ in G are independent if u_0 = v_0, u_i = ̸ v_i for all 1 ≤ i ≤ n−1. In G, a set of Hamiltonian cycles C = {C_1, C_2, ..., C_k} is mutually independent if any two Hamiltonian cycles of C are independent. The mutually independent Hamiltonicity IHC(G), = k means there exist a maximum integer k such that there exists k-mutually independent Hamiltonian cycles start from any vertex of G. In this paper, we prove that IHC(C_n × C_n) = 4, for n ≥ 3.

Keywords: independent, Hamiltonian, cycle, Cartesian product, mutually independent Hamiltonicity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
5 The Spanning Laceability of k-ary n-cubes when k is Even

Authors: Yuan-Kang Shih, Shu-Li Chang, Shin-Shin Kao

Abstract:

Qk n has been shown as an alternative to the hypercube family. For any even integer k ≥ 4 and any integer n ≥ 2, Qk n is a bipartite graph. In this paper, we will prove that given any pair of vertices, w and b, from different partite sets of Qk n, there exist 2n internally disjoint paths between w and b, denoted by {Pi | 0 ≤ i ≤ 2n-1}, such that 2n-1 i=0 Pi covers all vertices of Qk n. The result is optimal since each vertex of Qk n has exactly 2n neighbors.

Keywords: Hamiltonian, container, k-ary n-cube, m*-connected

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
4 A Systematic Approach for Finding Hamiltonian Cycles with a Prescribed Edge in Crossed Cubes

Authors: Jheng-Cheng Chen, Chia-Jui Lai, Chang-Hsiung Tsai,

Abstract:

The crossed cube is one of the most notable variations of hypercube, but some properties of the former are superior to those of the latter. For example, the diameter of the crossed cube is almost the half of that of the hypercube. In this paper, we focus on the problem embedding a Hamiltonian cycle through an arbitrary given edge in the crossed cube. We give necessary and sufficient condition for determining whether a given permutation with n elements over Zn generates a Hamiltonian cycle pattern of the crossed cube. Moreover, we obtain a lower bound for the number of different Hamiltonian cycles passing through a given edge in an n-dimensional crossed cube. Our work extends some recently obtained results.

Keywords: interconnection network, Hamiltonian, crossed cubes, prescribed edge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
3 The Panpositionable Hamiltonicity of k-ary n-cubes

Authors: Chia-Jung Tsai, Shin-Shin Kao

Abstract:

The hypercube Qn is one of the most well-known and popular interconnection networks and the k-ary n-cube Qk n is an enlarged family from Qn that keeps many pleasing properties from hypercubes. In this article, we study the panpositionable hamiltonicity of Qk n for k ≥ 3 and n ≥ 2. Let x, y of V (Qk n) be two arbitrary vertices and C be a hamiltonian cycle of Qk n. We use dC(x, y) to denote the distance between x and y on the hamiltonian cycle C. Define l as an integer satisfying d(x, y) ≤ l ≤ 1 2 |V (Qk n)|. We prove the followings: • When k = 3 and n ≥ 2, there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. • When k ≥ 5 is odd and n ≥ 2, we request that l /∈ S where S is a set of specific integers. Then there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. • When k ≥ 4 is even and n ≥ 2, we request l-d(x, y) to be even. Then there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. The result is optimal since the restrictions on l is due to the structure of Qk n by definition.

Keywords: Hamiltonian, k-ary n-cube, panpositionable, bipanpositionable

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
2 An Efficient Hamiltonian for Discrete Fractional Fourier Transform

Authors: Sukrit Shankar, Pardha Saradhi K., Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fractional Fourier Transform and show that the eigenvectors of the proposed matrix has a higher degree of correlation with the Hermite Gaussian functions. Also, the proposed matrix is shown to give better Fractional Fourier responses with various transform orders for different signals.

Keywords: fractional fourier transform, Hamiltonian, Eigen Vectors, Discrete Hermite Gaussians

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
1 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input

Authors: Toshinori Nawata, Hitoshi Takata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Genetic Algorithm, augmented automatic choosing control, Hamiltonian, NonlinearControl, Lyapunovfunction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193