**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**1

# Hamiltonian [a Related Publications

##### 1 A Sufficient Condition for Graphs to Have Hamiltonian [a, b]-Factors

**Authors:**
Sizhong Zhou

**Abstract:**

Let a and b be nonnegative integers with 2 ≤ a < b, and let G be a Hamiltonian graph of order n with n ≥ (a+b−4)(a+b−2) b−2 . An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian [a, b]-factor if |NG(X)| > (a−1)n+|X|−1 a+b−3 for every nonempty independent subset X of V (G) and δ(G) > (a−1)n+a+b−4 a+b−3 .

**Keywords:**
Neighborhood,
graph,
minimum degree,
b]-factor,
Hamiltonian [a