Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

fins Related Publications

4 Constructal Enhancement of Fins Design Integrated to Phase Change Materials

Authors: Varun Joshi, Manish K. Rathod

Abstract:

The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.

Keywords: fins, Phase Change Materials, constructal theory, enthalpy porosity approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 462
3 A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate

Authors: M. Bakhouya, O. Ansari, H. Hafs, A. Bah, M. Asbik, M. Malha

Abstract:

Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution.

Keywords: Desalination, fins, Solar Collector, active solar still, Brackisch water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428
2 Double Pass Solar Air Heater with Transvers Fins and without Absorber Plate

Authors: A. J. Mahmood, L. B. Y. Aldabbagh

Abstract:

The counter flow solar air heaters, with four transverse fins and wire mesh layers are constructed and investigated experimentally for thermal efficiency at a geographic location of Cyprus in the city of Famagusta. The absorber plate is replaced by sixteen steel wire mesh layers, 0.18 x 0.18cm in cross section opening and a 0.02cm in diameter. The wire mesh layers arranged in three groups, first and second include 6 layers, while the third include 4 layers. All layers fixed in the duct parallel to the glazing and each group separated from the others by wood frame thickness of 0.5cm to reduce the pressure drop. The transverse fins arranged in a way to force the air to flow through the bed like eight letter path with flow depth 3cm. The proposed design has increased the heat transfer rate, but on other hand causes a high pressure drop. The obtained results show that, for air mass flow rate range between 0.011-0.036kg/s, the thermal efficiency increases with increasing the air mass flow. The maximum efficiency obtained is 65.6% for the mass flow rate of 0.036kg/s. Moreover, the temperature difference between the outlet flow and the ambient temperature, ΔT, reduces as the air mass flow rate increase. The maximum difference between the outlet and ambient temperature obtained was 43°C for double pass for minimum mass flow rate of 0.011kg/s. Comparison with a conventional solar air heater collector shows a significantly development in the thermal efficiency.

Keywords: fins, Thermal Efficiency, wire mesh, Counter flow, solar air heater (SAH)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
1 Numerical Study of Natural Convection Effects in Latent Heat Storage using Aluminum Fins and Spiral Fillers

Authors: Lippong Tan, Yuenting Kwok, Ahbijit Date, Aliakbar Akbarzadeh

Abstract:

A numerical investigation has carried out to understand the melting characteristics of phase change material (PCM) in a fin type latent heat storage with the addition of embedded aluminum spiral fillers. It is known that melting performance of PCM can be significantly improved by increasing the number of embedded metallic fins in the latent heat storage system but to certain values where only lead to small improvement in heat transfer rate. Hence, adding aluminum spiral fillers within the fin gap can be an option to improve heat transfer internally. This paper presents extensive computational visualizations on the PCM melting patterns of the proposed fin-spiral fillers configuration. The aim of this investigation is to understand the PCM-s melting behaviors by observing the natural convection currents movement and melting fronts formation. Fluent 6.3 simulation software was utilized in producing twodimensional visualizations of melting fractions, temperature distributions and flow fields to illustrate the melting process internally. The results show that adding aluminum spiral fillers in Fin type latent heat storage can promoted small but more active natural convection currents and improve melting of PCM.

Keywords: fins, phase change material, thermal enhancement, aluminum spiral fillers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3037