Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

fair share Related Publications

2 Evaluating per-user Fairness of Goal-Oriented Parallel Computer Job Scheduling Policies

Authors: Sangsuree Vasupongayya

Abstract:

Fair share objective has been included into the goaloriented parallel computer job scheduling policy recently. However, the previous work only presented the overall scheduling performance. Thus, the per-user performance of the policy is still lacking. In this work, the details of per-user fair share performance under the Tradeoff-fs(Tx:avgX) policy will be further evaluated. A basic fair share priority backfill policy namely RelShare(1d) is also studied. The performance of all policies is collected using an event-driven simulator with three real job traces as input. The experimental results show that the high demand users are usually benefited under most policies because their jobs are large or they have a lot of jobs. In the large job case, one job executed may result in over-share during that period. In the other case, the jobs may be backfilled for performances. However, the users with a mixture of jobs may suffer because if the smaller jobs are executing the priority of the remaining jobs from the same user will be lower. Further analysis does not show any significant impact of users with a lot of jobs or users with a large runtime approximation error.

Keywords: deviation, fair share, discrepancy search, priority scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
1 Impact of Fair Share and its Configurations on Parallel Job Scheduling Algorithms

Authors: Sangsuree Vasupongayya

Abstract:

To provide a better understanding of fair share policies supported by current production schedulers and their impact on scheduling performance, A relative fair share policy supported in four well-known production job schedulers is evaluated in this study. The experimental results show that fair share indeed reduces heavy-demand users from dominating the system resources. However, the detailed per-user performance analysis show that some types of users may suffer unfairness under fair share, possibly due to priority mechanisms used by the current production schedulers. These users typically are not heavy-demands users but they have mixture of jobs that do not spread out.

Keywords: backfill, measures, fair share, Parallel job scheduler

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761