Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

energy balance equation Related Publications

3 Using ANSYS to Realize a Semi-Analytical Method for Predicting Temperature Profile in Injection/Production Well

Authors: N. Tarom, M.M. Hossain

Abstract:

Determination of wellbore problems during a production/injection process might be evaluated thorough temperature log analysis. Other applications of this kind of log analysis may also include evaluation of fluid distribution analysis along the wellbore and identification of anomalies encountered during production/injection process. While the accuracy of such prediction is paramount, the common method of determination of a wellbore temperature log includes use of steady-state energy balance equations, which hardly describe the real conditions as observed in typical oil and gas flowing wells during production operation; and thus increase level of uncertainties. In this study, a practical method has been proposed through development of a simplified semianalytical model to apply for predicting temperature profile along the wellbore. The developed model includes an overall heat transfer coefficient accounting all modes of heat transferring mechanism, which has been focused on the prediction of a temperature profile as a function of depth for the injection/production wells. The model has been validated with the results obtained from numerical simulation.

Keywords: overall heat transfer coefficient, energy balance equation, reservoir and well performance, temperature log

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
2 Three Steps of One-way Nested Grid for Energy Balance Equations by Wave Model

Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai

Abstract:

The three steps of the standard one-way nested grid for a regional scale of the third generation WAve Model Cycle 4 (WAMC4) is scrutinized. The model application is enabled to solve the energy balance equation on a coarse resolution grid in order to produce boundary conditions for a smaller area by the nested grid technique. In the present study, the model takes a full advantage of the fine resolution of wind fields in space and time produced by the available U.S. Navy Global Atmospheric Prediction System (NOGAPS) model with 1 degree resolution. The nested grid application of the model is developed in order to gradually increase the resolution from the open ocean towards the South China Sea (SCS) and the Gulf of Thailand (GoT) respectively. The model results were compared with buoy observations at Ko Chang, Rayong and Huahin locations which were obtained from the Seawatch project. In addition, the results were also compared with Satun based weather station which was provided from Department of Meteorology, Thailand. The data collected from this station presented the significant wave height (Hs) reached 12.85 m. The results indicated that the tendency of the Hs from the model in the spherical coordinate propagation with deep water condition in the fine grid domain agreed well with the Hs from the observations.

Keywords: Wave model, South China Sea, Gulf of Thailand, energy balance equation, nested gridapplication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
1 Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations

Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram

Abstract:

A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.

Keywords: Numerical Analysis, wave, storm surge, energy balance equation, primitiveequation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628