Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Elliptic Curves Related Publications

7 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field

Authors: Tun Myat Aung, Ni Ni Hla

Abstract:

This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.c

Keywords: Elliptic Curves, discrete logarithm problem, general attacks, prime field, binary field, strong curves, attack experiments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
6 Improved of Elliptic Curves Cryptography over a Ring

Authors: A. Chillali, A. Tadmori, M. Ziane

Abstract:

In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem.

Keywords: Cryptography, Elliptic Curves, finite ring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
5 Positive Definite Quadratic Forms, Elliptic Curves and Cubic Congruences

Authors: Ahmet Tekcan

Abstract:

Let F(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = -1/m for an integer m ≥ 2, let p be a prime number and let Fp be a finite field. Let EF : y2 = ax3 + bx2 + cx be an elliptic curve over Fp and let CF : ax3 + bx2 + cx ≡ 0(mod p) be the cubic congruence corresponding to F. In this work we consider some properties of positive definite quadratic forms, elliptic curves and cubic congruences.

Keywords: Elliptic Curves, Binary quadratic form, cubic congruence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
4 Elliptic Divisibility Sequences over Finite Fields

Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim

Abstract:

In this work, we study elliptic divisibility sequences over finite fields. Morgan Ward in [14], [15] gave arithmetic theory of elliptic divisibility sequences and formulas for elliptic divisibility sequences with rank two over finite field Fp. We study elliptic divisibility sequences with rank three, four and five over a finite field Fp, where p > 3 is a prime and give general terms of these sequences and then we determine elliptic and singular curves associated with these sequences.

Keywords: Elliptic Curves, Elliptic divisibility sequences, singular elliptic divisibilitysequences, singular curves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
3 New DES based on Elliptic Curves

Authors: Ghada Abdelmouez M., Fathy S. Helail, Abdellatif A. Elkouny

Abstract:

It is known that symmetric encryption algorithms are fast and easy to implement in hardware. Also elliptic curves have proved to be a good choice for building encryption system. Although most of the symmetric systems have been broken, we can create a hybrid system that has the same properties of the symmetric encryption systems and in the same time, it has the strength of elliptic curves in encryption. As DES algorithm is considered the core of all successive symmetric encryption systems, we modified DES using elliptic curves and built a new DES algorithm that is hard to be broken and will be the core for all other symmetric systems.

Keywords: Hybrid System, Elliptic Curves, DES, symmetricencryption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
2 A Pairing-based Blind Signature Scheme with Message Recovery

Authors: Song Han, Elizabeth Chang

Abstract:

Blind signatures enable users to obtain valid signatures for a message without revealing its content to the signer. This paper presents a new blind signature scheme, i.e. identity-based blind signature scheme with message recovery. Due to the message recovery property, the new scheme requires less bandwidth than the identitybased blind signatures with similar constructions. The scheme is based on modified Weil/Tate pairings over elliptic curves, and thus requires smaller key sizes for the same level of security compared to previous approaches not utilizing bilinear pairings. Security and efficiency analysis for the scheme is provided in this paper.

Keywords: Elliptic Curves, blindness, blind signature, Message Recovery, Pairings

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1 Deniable Authentication Protocol Resisting Man-in-the-Middle Attack

Authors: Song Han, Elizabeth Chang, Wanquan Liu

Abstract:

Deniable authentication is a new protocol which not only enables a receiver to identify the source of a received message but also prevents a third party from identifying the source of the message. The proposed protocol in this paper makes use of bilinear pairings over elliptic curves, as well as the Diffie-Hellman key exchange protocol. Besides the security properties shared with previous authentication protocols, the proposed protocol provides the same level of security with smaller public key sizes.

Keywords: Cryptography, Elliptic Curves, deniable authentication, Man-in-the-middleAttack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232