Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

dpm Related Publications

2 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia


Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: autonomous vehicles, deformable part model, dpm, pedestrian recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
1 Assessment of Vulnerability Curves Using Vulnerability Index Method for Reinforced Concrete Structures

Authors: F. I. Belheouane, M. Bensaibi


The seismic feedback experiences in Algeria have shown higher percentage of damages for non-code conforming reinforced concrete (RC) buildings. Furthermore, the vulnerability of these buildings was further aggravated due to presence of many factors (e.g. weak the seismic capacity of these buildings, shorts columns, Pounding effect, etc.). Consequently Seismic risk assessments were carried out on populations of buildings to identify the buildings most likely to undergo losses during an earthquake. The results of such studies are important in the mitigation of losses under future seismic events as they allow strengthening intervention and disaster management plans to be drawn up. Within this paper, the state of the existing structures is assessed using "the vulnerability index" method. This method allows the classification of RC constructions taking into account both, structural and non structural parameters, considered to be ones of the main parameters governing the vulnerability of the structure. Based on seismic feedback from past earthquakes DPM (damage probability matrices) were developed too.

Keywords: Earthquake, Reinforced Concrete Buildings, Seismic Vulnerability, Algeria, dpm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508