Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

dehydrogenation Related Publications

6 Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst

Authors: N. Hataivichian, K. Suriye, S. Kunjara Na Ayudhya, P. Praserthdam, S. Phatanasri

Abstract:

The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500°C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, COchemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal.

Keywords: dehydrogenation, Platinum, alumina, transition metal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
5 Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts

Authors: S. Totong, K. Faungnawakij, N. Laosiripojana

Abstract:

The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (<500°C) reaction. Copper (Cu) and silver (Ag) supported on fumed silica (SiO2) were selected in the present work; in addition, bimetallic material; Ag-Cu supported on SiO2 was also investigated. The catalysts were prepared by the incipient wetness impregnation method and characterized via X-ray diffraction (XRD), temperature-programmed reduction (TPR)and nitrogen adsorption measurements. The catalytic dehydrogenation of ethanol was carried out in a fixed bed continuous flow reactor at atmospheric pressure. The effect of reaction temperature between 300-375°C was studied in order to maximize the hydrogen yield. It was found that Ag-Cu/SiO2 exhibited the highest hydrogen yield compared to Ag/SiO2 and Cu/SiO2 at low reaction temperature (300°C) with full ethanol conversion. The highest hydrogen yield observed was 40% and will be further used as a reactant in fuel cells to generate electricity or feedstock of chemical production. 

Keywords: dehydrogenation, Ethanol, Catalyst, hydrogen production

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199
4 Optimization of Reaction Rate Parameters in Modeling of Heavy Paraffins Dehydrogenation

Authors: Leila Vafajoo, Farhad Khorasheh, Mehrnoosh Hamzezadeh Nakhjavani, Moslem Fattahi

Abstract:

In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt–Sn/Al2O3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved numerically to determine variations in components- concentrations in term of mole percents as a function of time and reactor radius. It was demonstrated that most significant variations observed at the entrance of the bed and the initial olefin production obtained was rather high. The aforementioned method utilized a direct-search optimization algorithm along with the numerical solution of the governing differential equations. The usefulness and validity of the method was demonstrated by comparing the predicted values of the kinetic constants using the proposed method with a series of experimental values reported in the literature for different systems.

Keywords: Modeling, Optimization, dehydrogenation, Pt-Sn/Al2O3 Catalyst, Nelder-Mead

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
3 Kinetic model and Simulation Analysis for Propane Dehydrogenation in an Industrial Moving Bed Reactor

Authors: Chin S. Y., Radzi, S. N. R., Maharon, I. H., Shafawi, M. A.

Abstract:

A kinetic model for propane dehydrogenation in an industrial moving bed reactor is developed based on the reported reaction scheme. The kinetic parameters and activity constant are fine tuned with several sets of balanced plant data. Plant data at different operating conditions is applied to validate the model and the results show a good agreement between the model predictions and plant observations in terms of the amount of main product, propylene produced. The simulation analysis of key variables such as inlet temperature of each reactor (Tinrx) and hydrogen to total hydrocarbon ratio (H2/THC) affecting process performance is performed to identify the operating condition to maximize the production of propylene. Within the range of operating conditions applied in the present studies, the operating condition to maximize the propylene production at the same weighted average inlet temperature (WAIT) is ΔTinrx1= -2, ΔTinrx2= +1, ΔTinrx3= +1 , ΔTinrx4= +2 and ΔH2/THC= -0.02. Under this condition, the surplus propylene produced is 7.07 tons/day as compared with base case.

Keywords: Modeling, Simulation, dehydrogenation, kinetic model, propane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858
2 Dynamic Modeling and Simulation of Heavy Paraffin Dehydrogenation Reactor for Selective Olefin Production in Linear Alkyl Benzene Production Plant

Authors: G. Zahedi, H. Yaghoobi

Abstract:

Modeling of a heterogeneous industrial fixed bed reactor for selective dehydrogenation of heavy paraffin with Pt-Sn- Al2O3 catalyst has been the subject of current study. By applying mass balance, momentum balance for appropriate element of reactor and using pressure drop, rate and deactivation equations, a detailed model of the reactor has been obtained. Mass balance equations have been written for five different components. In order to estimate reactor production by the passage of time, the reactor model which is a set of partial differential equations, ordinary differential equations and algebraic equations has been solved numerically. Paraffins, olefins, dienes, aromatics and hydrogen mole percent as a function of time and reactor radius have been found by numerical solution of the model. Results of model have been compared with industrial reactor data at different operation times. The comparison successfully confirms validity of proposed model.

Keywords: Modeling, dehydrogenation, fixed bed reactor, linear alkyl benzene

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
1 Propane Dehydrogenation over Pt-Sn Supported on Magnesium Aluminate Material

Authors: Deepa Govindarajan, Debdut Roy

Abstract:

Pt-Sn catalysts have been prepared using magnesium aluminate as a support with two different Mg/Al ratio. The supports/catalysts have been characterized by N2-adsorption, XRD, and temperature programmed desorption of NH3 and thermogravimetry analysis (TGA). The catalysts have been evaluated at 595 0C for the propane dehydrogenation reaction at 0.5 barg pressure using a feed containing pure propane with steam to hydrocarbon ratio of 1 mol/mol and weight hourly space velocity (WHSV) 0.9 h-1. Chlorine quantification studies have been developed using Carbon-Hydrogen-Nitrogen-Sulphur (CHNS) analyzer. The dechlorinated catalyst with higher alumina content showed better performance (38-43% propane conversion, 91-94% propylene selectivity) in propane conversion and propylene selectivity than Pt-Sn-MG-AL-DC-1 (30-18% propane conversion, 83-90% propylene selectivity).

Keywords: dehydrogenation, alumina, platinum-tin catalyst, dechlorination

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305