cycle Related Publications
3 Mutually Independent Hamiltonian Cycles of Cn x Cn
Authors: Kai-Siou Wu, Justie Su-Tzu Juan
Abstract:
In a graph G, a cycle is Hamiltonian cycle if it contain all vertices of G. Two Hamiltonian cycles C_1 = 〈u_0, u_1, u_2, ..., u_{n−1}, u_0〉 and C_2 = 〈v_0, v_1, v_2, ..., v_{n−1}, v_0〉 in G are independent if u_0 = v_0, u_i = ̸ v_i for all 1 ≤ i ≤ n−1. In G, a set of Hamiltonian cycles C = {C_1, C_2, ..., C_k} is mutually independent if any two Hamiltonian cycles of C are independent. The mutually independent Hamiltonicity IHC(G), = k means there exist a maximum integer k such that there exists k-mutually independent Hamiltonian cycles start from any vertex of G. In this paper, we prove that IHC(C_n × C_n) = 4, for n ≥ 3.
Keywords: independent, Hamiltonian, cycle, Cartesian product, mutually independent Hamiltonicity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9672 Neighbors of Indefinite Binary Quadratic Forms
Authors: Ahmet Tekcan
Abstract:
In this paper, we derive some algebraic identities on right and left neighbors R(F) and L(F) of an indefinite binary quadratic form F = F(x, y) = ax2 + bxy + cy2 of discriminant Δ = b2 -4ac. We prove that the proper cycle of F can be given by using its consecutive left neighbors. Also we construct a connection between right and left neighbors of F.Keywords: cycle, Quadratic form, indefinite form, proper cycle, right neighbor, left neighbor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11051 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem
Authors: Gu-Fang Mou, Ting-Zhu Huang
Abstract:
An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.
Keywords: digraph, matrix completion, cycle, N10 -matrix, non-combinatorially symmetric
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760