Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

cycle Related Publications

3 Mutually Independent Hamiltonian Cycles of Cn x Cn

Authors: Kai-Siou Wu, Justie Su-Tzu Juan

Abstract:

In a graph G, a cycle is Hamiltonian cycle if it contain all vertices of G. Two Hamiltonian cycles C_1 = ⟨u_0, u_1, u_2, ..., u_{n−1}, u_0⟩ and C_2 = ⟨v_0, v_1, v_2, ..., v_{n−1}, v_0⟩ in G are independent if u_0 = v_0, u_i = ̸ v_i for all 1 ≤ i ≤ n−1. In G, a set of Hamiltonian cycles C = {C_1, C_2, ..., C_k} is mutually independent if any two Hamiltonian cycles of C are independent. The mutually independent Hamiltonicity IHC(G), = k means there exist a maximum integer k such that there exists k-mutually independent Hamiltonian cycles start from any vertex of G. In this paper, we prove that IHC(C_n × C_n) = 4, for n ≥ 3.

Keywords: independent, Hamiltonian, cycle, Cartesian product, mutually independent Hamiltonicity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967
2 Neighbors of Indefinite Binary Quadratic Forms

Authors: Ahmet Tekcan

Abstract:

In this paper, we derive some algebraic identities on right and left neighbors R(F) and L(F) of an indefinite binary quadratic form F = F(x, y) = ax2 + bxy + cy2 of discriminant Δ = b2 -4ac. We prove that the proper cycle of F can be given by using its consecutive left neighbors. Also we construct a connection between right and left neighbors of F.

Keywords: cycle, Quadratic form, indefinite form, proper cycle, right neighbor, left neighbor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
1 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem

Authors: Gu-Fang Mou, Ting-Zhu Huang

Abstract:

An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.

Keywords: digraph, matrix completion, cycle, N10 -matrix, non-combinatorially symmetric

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760