Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Cluster Ensemble methods Related Publications

2 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.

Keywords: Clustering, Consensus Function, Cluster Ensemble methods, Co-association matrix, Median partition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
1 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.

Keywords: Clustering, Consensus Function, Cluster Ensemble methods, Median partition, Coassociation matrix

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785