Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

CFD simulations Related Publications

6 CFD Simulations to Study the Cooling Effects of Different Greening Modifications

Authors: An-Shik Yang, Chiang-Ho Cheng, Yu-Hsuan Juan, Chih-Yung Wen

Abstract:

The objective of this study is to conduct computational fluid dynamic (CFD) simulations for evaluating the cooling efficacy from vegetation implanted in a public park in the Taipei, Taiwan. To probe the impacts of park renewal by means of adding three pavilions and supplementary green areas on urban microclimates, the simulated results have revealed that the park having a higher percentage of green coverage ratio (GCR) tended to experience a better cooling effect. These findings can be used to explore the effects of different greening modifications on urban environments for achieving an effective thermal comfort in urban public spaces.

Keywords: CFD simulations, Green Coverage Ratio, Urban Public Park, urban heat island

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
5 Characterization of the Dispersion Phenomenon in an Optical Biosensor

Authors: An-Shik Yang, Chiang-Ho Cheng, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh

Abstract:

Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the micro channel of an optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of micro channels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.

Keywords: Microfluidic, Dispersion, CFD simulations, optical waveguide sensors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
4 CFD Simulations to Examine Natural Ventilation of a Work Area in a Public Building

Authors: An-Shik Yang, Chiang-Ho Cheng, Jen-Hao Wu, Yu-Hsuan Juan

Abstract:

Natural ventilation has played an important role for many low energy-building designs. It has been also noticed as a essential subject to persistently bring the fresh cool air from the outside into a building. This study carried out the computational fluid dynamics (CFD)-based simulations to examine the natural ventilation development of a work area in a public building. The simulated results can be useful to better understand the indoor microclimate and the interaction of wind with buildings. Besides, this CFD simulation procedure can serve as an effective analysis tool to characterize the airing performance, and thereby optimize the building ventilation for strengthening the architects, planners and other decision makers on improving the natural ventilation design of public buildings.

Keywords: Microclimate, CFD simulations, natural ventilation, wind environment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3283
3 3D CFD Simulation of Thermal Hydraulic Performances on Louvered Fin Automotive Heat Exchangers

Authors: S. Ben Saad, F. Ayad, H. Damotte

Abstract:

This study deals with Computational Fluid Dynamics (CFD) studies of the interactions between the air flow and louvered fins which equipped the automotive heat exchangers. 3D numerical simulation results are obtained by using the ANSYS Fluent 13.0 code and compared to experimental data. The paper studies the effect of louver angle and louver pitch geometrical parameters, on overall thermal hydraulic performances of louvered fins. The comparison between CFD simulations and experimental data show that established 3-D CFD model gives a good agreement. The validation agrees, with about 7% of deviation respectively of friction and Colburn factors to experimental results. As first, it is found that the louver angle has a strong influence on the heat transfer rate. Then, louver angle and louver pitch variation of the louvers and their effects on thermal hydraulic performances are studied. In addition to this study, it is shown that the second half of the fin takes has a significant contribution on pressure drop increase without any increase in heat transfer.

Keywords: Performances, CFD simulations, automotive heat exchanger

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666
2 Experimental and Numerical Study of the Effect of Lateral Wind on the Feeder Airship

Authors: A. Suñol, D. Vucinic, S.Vanlanduit, T. Markova, A. Aksenov, I. Moskalyov

Abstract:

Feeder is one of the airships of the Multibody Advanced Airship for Transport (MAAT) system, under development within the EU FP7 project. MAAT is based on a modular concept composed of two different parts that have the possibility to join; respectively they are the so-called Cruiser and Feeder, designed on the lighter than air principle. Feeder, also named ATEN (Airship Transport Elevator Network), is the smaller one which joins the bigger one, Cruiser, also named PTAH (Photovoltaic modular Transport Airship for High altitude),envisaged to happen at 15km altitude. During the MAAT design phase, the aerodynamic studies of the both airships and their interactions are analyzed. The objective of these studies is to understand the aerodynamic behavior of all the preselected configurations, as an important element in the overall MAAT system design. The most of these configurations are only simulated by CFD, while the most feasible one is experimentally analyzed in order to validate and thrust the CFD predictions. This paper presents the numerical and experimental investigation of the Feeder “conical like" shape configuration. The experiments are focused on the aerodynamic force coefficients and the pressure distribution over the Feeder outer surface, while the numerical simulation cover also the analysis of the velocity and pressure distribution. Finally, the wind tunnel experiment is compared with its CFD model in order to validate such specific simulations with respective experiments and to better understand the difference between the wind tunnel and in-flight circumstances.

Keywords: CFD simulations, MAAT project Feeder, wind tunnel experiments, lateral wind influence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
1 Verification of K-ω SST Turbulence Model for Supersonic Internal Flows

Authors: J. Kolář, V. Dvořák

Abstract:

In this work, we try to find the best setting of Computational Fluid Dynamic solver available for the problems in the field of supersonic internal flows. We used the supersonic air-toair ejector to represent the typical problem in focus. There are multiple oblique shock waves, shear layers, boundary layers and normal shock interacting in the supersonic ejector making this device typical in field of supersonic inner flows. Modeling of shocks in general is demanding on the physical model of fluid, because ordinary conservation equation does not conform to real conditions in the near-shock region as found in many works. From these reasons, we decided to take special care about solver setting in this article by means of experimental approach of color Schlieren pictures and pneumatic measurement. Fast pressure transducers were used to measure unsteady static pressure in regimes with normal shock in mixing chamber. Physical behavior of ejector in several regimes is discussed. Best choice of eddy-viscosity setting is discussed on the theoretical base. The final verification of the k-ω SST is done on the base of comparison between experiment and numerical results.

Keywords: Shock Waves, CFD simulations, supersonic flows, color Schlieren, k-ω SST

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5985