Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Categorization Related Publications

5 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model

Authors: Yolina A. Petrova, Georgi I. Petkov

Abstract:

The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.

Keywords: Cognitive Modeling, Categorization, Category Learning, analogy-making, role-governed category

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295
4 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Yolina A. Petrova, Georgi I. Petkov, Ivan I. Vankov

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: Categorization, Abstraction, Hierarchical Structure, analogy-making, learning of categories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 298
3 Definition in Law: Transgender Identities and Marriage

Authors: Kimberly Tao

Abstract:

This paper looks at transgender identities and the law in the context of marriage. It particularly focuses on the role of language and definition in classifying transgendered individuals into a legal category. Two lines of cases in transgender jurisprudence are examined. The former cases decided the definition of 'man' and 'woman' on the basis of biological criteria while the latter cases held that biological factors should not be the sole criterion for defining a man or a woman. Three categories were found to classify transgender people, namely male, female and "monstrous". Since transgender people challenge the core gender distinction that the law stresses, they are often regarded as problematic and monstrous which caused them to be subjected to severe legal consequences. This paper discusses these issues by analyzing and comparing different cases in transgender jurisprudence as well as examining how these issues play out in contemporary Hong Kong.

Keywords: Definition, Categorization, Trangender, Monstrousness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
2 Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories

Authors: Arkady Bolotin

Abstract:

Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.

Keywords: Robustness, Categorization, Uncertain medical categories, Binomial regression model, Fuzzy dependent variable

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188
1 A New Approach for Flexible Document Categorization

Authors: Jebari Chaker, Ounelli Habib

Abstract:

In this paper we propose a new approach for flexible document categorization according to the document type or genre instead of topic. Our approach implements two homogenous classifiers: contextual classifier and logical classifier. The contextual classifier is based on the document URL, whereas, the logical classifier use the logical structure of the document to perform the categorization. The final categorization is obtained by combining contextual and logical categorizations. In our approach, each document is assigned to all predefined categories with different membership degrees. Our experiments demonstrate that our approach is best than other genre categorization approaches.

Keywords: Categorization, flexible, Genre, combination, URL, logicalstructure, category

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135