Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20

Breast Cancer Related Publications

20 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi

Abstract:

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Keywords: Cancer Treatment, Breast Cancer, Laser Diode, electrospun scaffold, polycaprolacton

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162
19 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks

Authors: Siddhant Rao

Abstract:

Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.

Keywords: Computer Vision, Breast Cancer, Histopathology, Deep learning, Object Detection, mitotic count

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
18 Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice

Authors: H. Yousefnia, S. Zolghadri, M. Mousavi-Daramoroudi, F. Abbasi-Davani

Abstract:

In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.

Keywords: Dosimetry, Breast Cancer, compartmental modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 286
17 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: Artificial Neural Networks, Precision, Machine Learning, Breast Cancer, Cervical Cancer, Logistic Regression, support vector machine, classifiers, recall, F-score, cancer dataset

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
16 Biodistribution Studies of 177Lu-DOTATOC in Mouse Tumor Model: Possible Utilization in Adenocarcinoma Breast Cancer Treatment

Authors: H. Yousefnia, S. Zolghadri, M. Mousavi-Daramoroudi, F. Abbasi-Davani, S. Kakaei

Abstract:

Despite the appropriate characteristics of 177Lu and DOTATOC, to our best knowledge, the therapeutic benefit of 177Lu-DOTATOC complex in breast cancer has not been reported until now. In this study, biodistribution of 177Lu-DOTA-TOC in mouse tumor model for evaluation of possible utilization of this complex in breast cancer treatment was investigated.177Lu was prepared with the specific activity of 2.6-3 GBq.mg-1 and radionuclidic purity higher than 99%. The radiolabeled complex was prepared in the optimized conditions with the radiochemical purity higher than 99%. The final solution was injected to the BALB/c mice with adenocarcinoma breast cancer. The biodistribution results showed major accumulation in the kidneys as the major excretion route and the somatostatin receptor-positive tissues such as pancreas compared with the other tissues. Also, significant uptake was observed in tumor even in longer time after injection. According to the results obtained in this research study, somatostatin receptors expressed in breast cancers can be targeted with DOTATOC analogues especially with 177Lu-DOTATOC as an ideal therapeutic agent.

Keywords: Breast Cancer, adenocarcinoma, BALB/c mice, DOTATOC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 405
15 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification

Authors: Nebi Gedik, Ayten Atasoy

Abstract:

This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.

Keywords: Breast Cancer, SVM, k-NN, wave atom transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
14 Calcification Classification in Mammograms Using Decision Trees

Authors: S. Usha, S. Arumugam

Abstract:

Cancer affects people globally with breast cancer being a leading killer. Breast cancer is due to the uncontrollable multiplication of cells resulting in a tumour or neoplasm. Tumours are called ‘benign’ when cancerous cells do not ravage other body tissues and ‘malignant’ if they do so. As mammography is an effective breast cancer detection tool at an early stage which is the most treatable stage it is the primary imaging modality for screening and diagnosis of this cancer type. This paper presents an automatic mammogram classification technique using wavelet and Gabor filter. Correlation feature selection is used to reduce the feature set and selected features are classified using different decision trees.

Keywords: Breast Cancer, mammogram, Decision trees, Gabor filters, Symlet Wavelets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
13 Association of Overweight and Obesity with Breast Cancer

Authors: Amir Ghasemlouei, Alireza Khalaj

Abstract:

Breast cancer is in the top rate of cancer. We analyzed the prevalence of obesity and its association with breast cancer and finally we reviewed 25 article that 320 patient and 320 control which enrolled to our study. The distribution of breast cancer patients and controls with respect to their anthropometric indices in patients with higher weight, which was statistically significant (60.2 ± 10.2 kg) compared with control group (56.1 ± 11.3 kg). The body mass index of patients was (26.06+/-3.42) and significantly higher than the control group (24.1+/-1.7). Obesity leads to increased levels of adipose tissue in the body that can be stored toxins and carcinogens to produce a continuous supply. Due to the high level of fat and the role of estrogen in a woman which is endogenous estrogen of the tumor and regulates the activities of growth steroids, obesity has confirmed as a risk factor for breast cancer. Our study and other studies have shown that obesity is a risk factor for breast cancer. And it can be prevented with a weight loss intervention for breast cancer in the future.

Keywords: Obesity, Breast Cancer, Overweight, review study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
12 Factors Associated with Mammography Screening Behaviors: A Cross-Sectional Descriptive Study of Egyptian Women

Authors: Salwa Hagag Abdelaziz, Naglaa Fathy Youssef, Nadia Abdel Latif Hassan, Rasha Wesam Abdel Rahman

Abstract:

Breast cancer is considered as a substantial health concern and practicing mammography screening [MS] is important in minimizing its related morbidity. So it is essential to have a better understanding of breast cancer screening behaviors of women and factors that influence utilization of them. The aim of this study is to identify the factors that are linked to MS behaviors among the Egyptian women. A cross-sectional descriptive design was carried out to provide a snapshot of the factors that are linked to MS behaviors. A convenience sample of 311 women was utilized and all eligible participants admitted to the Women Imaging Unit who are 40 years of age or above, coming for mammography assessment, not pregnant or breast feeding and who accepted to participate in the study were included. A structured questionnaire was developed by the researchers and contains three parts; Socio-demographic data; Motivating factors associated with MS; and association between MS and model of behavior change. The analyzed data indicated that most of the participated women (66.6%) belonged to the age group of 40- 49.A high proportion of participants (58.1%) of group having previous MS influenced by their neighbors to practice MS, whereas 32.7 % in group not having previous MS were influenced by family members which indicated significant differences (P <0.05). Doctors and media shown to be the least influence of others to practice MS. Women with intention to have a future mammogram had higher OR (1.404) for practicing MS compared with women with no intention. Further studies are needed to examine the relation between Transtheoretical Model [TTM] and practicing MS.

Keywords: Breast Cancer, Mammography, screening behaviors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
11 Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT

Authors: A. Sindhuja, V. Sadasivam

Abstract:

Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.

Keywords: Breast Cancer, Segmentation, Sonoelastography, Tumor Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
10 An Overview of the Application of Fuzzy Inference System for the Automation of Breast Cancer Grading with Spectral Data

Authors: Shabbar Naqvi, Jonathan M. Garibaldi

Abstract:

Breast cancer is one of the most frequent occurring cancers in women throughout the world including U.K. The grading of this cancer plays a vital role in the prognosis of the disease. In this paper we present an overview of the use of advanced computational method of fuzzy inference system as a tool for the automation of breast cancer grading. A new spectral data set obtained from Fourier Transform Infrared Spectroscopy (FTIR) of cancer patients has been used for this study. The future work outlines the potential areas of fuzzy systems that can be used for the automation of breast cancer grading.

Keywords: Breast Cancer, Principal Component Analysis, FTIR, fuzzy inference system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
9 A Preliminary X-Ray Study on Human-Hair Microstructures for a Health-State Indicator

Authors: Phannee Saengkaew, Sakuntam Sanorpim, Weerasak Ussawawongaraya, Sasiphan Khaweerat, Supagorn Rugmai, Sirisart Ouajai, Jiraporn Luengviriya, Manop Tirarattanasompot, Somboon Rhianphumikarakit

Abstract:

We present a preliminary x-ray study on human-hair microstructures for a health-state indicator, in particular a cancer case. As an uncomplicated and low-cost method of x-ray technique, the human-hair microstructure was analyzed by wide-angle x-ray diffractions (XRD) and small-angle x-ray scattering (SAXS). The XRD measurements exhibited the simply reflections at the d-spacing of 28 Å, 9.4 Å and 4.4 Å representing to the periodic distance of the protein matrix of the human-hair macrofibrous and the diameter and the repeated spacing of the polypeptide alpha helixes of the photofibrils of the human-hair microfibrous, respectively. When compared to the normal cases, the unhealthy cases including to the breast- and ovarian-cancer cases obtained higher normalized ratios of the x-ray diffracting peaks of 9.4 Å and 4.4 Å. This likely resulted from the varied distributions of microstructures by a molecular alteration. As an elemental analysis by x-ray fluorescence (XRF), the normalized quantitative ratios of zinc(Zn)/calcium(Ca) and iron(Fe)/calcium(Ca) were determined. Analogously, both Zn/Ca and Fe/Ca ratios of the unhealthy cases were obtained higher than both of the normal cases were. Combining the structural analysis by XRD measurements and the elemental analysis by XRF measurements exhibited that the modified fibrous microstructures of hair samples were in relation to their altered elemental compositions. Therefore, these microstructural and elemental analyses of hair samples will be benefit to associate with a diagnosis of cancer and genetic diseases. This functional method would lower a risk of such diseases by the early diagnosis. However, the high-intensity x-ray source, the highresolution x-ray detector, and more hair samples are necessarily desired to develop this x-ray technique and the efficiency would be enhanced by including the skin and fingernail samples with the human-hair analysis.

Keywords: Breast Cancer, XRD, SAXS, Human-hair analysis, health-state indicator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
8 A Novel Approach towards Segmentation of Breast Tumors from Screening Mammograms for Efficient Decision Support System

Authors: M.Madheswaran, M.Suganthi

Abstract:

This paper presents a novel approach to finding a priori interesting regions in mammograms. In order to delineate those regions of interest (ROI-s) in mammograms, which appear to be prominent, a topographic representation called the iso-level contour map consisting of iso-level contours at multiple intensity levels and region segmentation based-thresholding have been proposed. The simulation results indicate that the computed boundary gives the detection rate of 99.5% accuracy.

Keywords: Breast Cancer, mammogram, and Segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171
7 Identification of Complex Sense-antisense Gene's Module on 17q11.2 Associated with Breast Cancer Aggressiveness and Patient's Survival

Authors: O. Grinchuk, E. Motakis, V. Kuznetsov

Abstract:

Sense-antisense gene pair (SAGP) is a pair of two oppositely transcribed genes sharing a common region on a chromosome. In the mammalian genomes, SAGPs can be organized in more complex sense-antisense gene architectures (CSAGA) in which at least one gene could share loci with two or more antisense partners. Many dozens of CSAGAs can be found in the human genome. However, CSAGAs have not been systematically identified and characterized in context of their role in human diseases including cancers. In this work we characterize the structural-functional properties of a cluster of 5 genes –TMEM97, IFT20, TNFAIP1, POLDIP2 and TMEM199, termed TNFAIP1 / POLDIP2 module. This cluster is organized as CSAGA in cytoband 17q11.2. Affymetrix U133A&B expression data of two large cohorts (410 atients, in total) of breast cancer patients and patient survival data were used. For the both studied cohorts, we demonstrate (i) strong and reproducible transcriptional co-regulatory patterns of genes of TNFAIP1/POLDIP2 module in breast cancer cell subtypes and (ii) significant associations of TNFAIP1/POLDIP2 CSAGA with amplification of the CSAGA region in breast cancer, (ii) cancer aggressiveness (e.g. genetic grades) and (iv) disease free patient-s survival. Moreover, gene pairs of this module demonstrate strong synergetic effect in the prognosis of time of breast cancer relapse. We suggest that TNFAIP1/ POLDIP2 cluster can be considered as a novel type of structural-functional gene modules in the human genome.

Keywords: Breast Cancer, prognosis, survival analysis, Sense-antisense gene pair, complex genome architecture, TMEM97, IFT20, TNFAIP1, POLDIP2, TMEM199, transcription regulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
6 Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Authors: Alireza Osareh, Bita Shadgar

Abstract:

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

Keywords: Breast Cancer, Treatment Planning, active contours, fuzzy c-means segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
5 Breast Cancer Treatment Evaluation based on Mammographic and Echographic Distance Computing

Authors: Irina Severin, M. Caramihai, H. Balan, A. Blidaru, V. Balanica

Abstract:

Accurate assessment of the primary tumor response to treatment is important in the management of breast cancer. This paper introduces a new set of treatment evaluation indicators for breast cancer cases based on the computational process of three known metrics, the Euclidian, Hamming and Levenshtein distances. The distance principals are applied to pairs of mammograms and/or echograms, recorded before and after treatment, determining a reference point in judging the evolution amount of the studied carcinoma. The obtained numerical results are indeed very transparent and indicate not only the evolution or the involution of the tumor under treatment, but also a quantitative measurement of the benefit in using the selected method of treatment.

Keywords: Breast Cancer, Distance metrics, Cancer treatment evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
4 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network

Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad

Abstract:

This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.

Keywords: Neural Networks, Diagnosis, Breast Cancer, multiwavelet packet, microcalcification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
3 Development of a 3D Mathematical Model for a Doxorubicin Controlled Release System using Pluronic Gel for Breast Cancer Treatment

Authors: K. Viravaidya, W. Kaowumpai, D. Koolpiruck

Abstract:

Female breast cancer is the second in frequency after cervical cancer. Surgery is the most common treatment for breast cancer, followed by chemotherapy as a treatment of choice. Although effective, it causes serious side effects. Controlled-release drug delivery is an alternative method to improve the efficacy and safety of the treatment. It can release the dosage of drug between the minimum effect concentration (MEC) and minimum toxic concentration (MTC) within tumor tissue and reduce the damage of normal tissue and the side effect. Because an in vivo experiment of this system can be time-consuming and labor-intensive, a mathematical model is desired to study the effects of important parameters before the experiments are performed. Here, we describe a 3D mathematical model to predict the release of doxorubicin from pluronic gel to treat human breast cancer. This model can, ultimately, be used to effectively design the in vivo experiments.

Keywords: Breast Cancer, doxorubicin, Controlled ReleaseSystem, Diffusion and Convection Equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
2 Detection of Breast Cancer in the JPEG2000 Domain

Authors: Fayez M. Idris, Nehal I. AlZubaidi

Abstract:

Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.

Keywords: Breast Cancer, Mammography, JPEG2000, microcalcifications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
1 Mammogram Image Size Reduction Using 16-8 bit Conversion Technique

Authors: Ayman A. AbuBaker, Rami S.Qahwaji, Musbah J. Aqel, Mohmmad H. Saleh

Abstract:

Two algorithms are proposed to reduce the storage requirements for mammogram images. The input image goes through a shrinking process that converts the 16-bit images to 8-bits by using pixel-depth conversion algorithm followed by enhancement process. The performance of the algorithms is evaluated objectively and subjectively. A 50% reduction in size is obtained with no loss of significant data at the breast region.

Keywords: Image Processing, Breast Cancer, Image Enhancement, mammograms, Image reduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691