Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

boundary condition Related Publications

3 Application of Novel Conserving Immersed Boundary Method to Moving Boundary Problem

Authors: S. M. H. Karimian, S. N. Hosseini

Abstract:

A new conserving approach in the context of Immersed Boundary Method (IBM) is presented to simulate one dimensional, incompressible flow in a moving boundary problem. The method employs control volume scheme to simulate the flow field. The concept of ghost node is used at the boundaries to conserve the mass and momentum equations. The Present method implements the conservation laws in all cells including boundary control volumes. Application of the method is studied in a test case with moving boundary. Comparison between the results of this new method and a sharp interface (Image Point Method) IBM algorithm shows a well distinguished improvement in both pressure and velocity fields of the present method. Fluctuations in pressure field are fully resolved in this proposed method. This approach expands the IBM capability to simulate flow field for variety of problems by implementing conservation laws in a fully Cartesian grid compared to other conserving methods.

Keywords: boundary condition, Immersed Boundary Method, moving boundary, conservation of mass and momentum laws

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
2 The Effects of Plate-Support Condition on Buckling Strength of Rectangular Perforated Plates under Linearly Varying In-Plane Normal Load

Authors: A. R. Nezamabadi, M. Tajdari, M. Naeemi, P. Pirali

Abstract:

Mechanical buckling analysis of rectangular plates with central circular cutout is performed in this paper. The finiteelement method is used to study the effects of plate-support conditions, aspect ratio, and hole size on the mechanical buckling strength of the perforated plates subjected to linearly varying loading. Results show that increasing the hole size does not necessarily reduce the mechanical buckling strength of the perforated plates. It is also concluded that the clamped boundary condition increases the mechanical buckling strength of the perforated plates more than the simply-supported boundary condition and the free boundary conditions enhance the mechanical buckling strength of the perforated plates more effectively than the fixed boundary conditions. Furthermore, for the bending cases, the critical buckling load of perforated plates with free edges is less than perforated plates with fixed edges.

Keywords: buckling, boundary condition, rectangular plates, Perforated plates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3057
1 Effect of Concrete Nonlinear Parameters on the Seismic Response of Concrete Gravity Dams

Authors: Z. Heirany, M. Ghaemian

Abstract:

Behavior of dams against the seismic loads has been studied by many researchers. Most of them proposed new numerical methods to investigate the dam safety. In this paper, to study the effect of nonlinear parameters of concrete in gravity dams, a twodimensional approach was used including the finite element method, staggered method and smeared crack approach. Effective parameters in the models are physical properties of concrete such as modulus of elasticity, tensile strength and specific fracture energy. Two different models were used in foundation (mass-less and massed) in order to determine the seismic response of concrete gravity dams. Results show that when the nonlinear analysis includes the dam- foundation interaction, the foundation-s mass, flexibility and radiation damping are important in gravity dam-s response.

Keywords: Numerical Methods, concrete gravity dams, boundary condition, finiteelement method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890