Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

balance control Related Publications

4 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Sheam-Chyun Lin, Su-Shean Chen

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: Speed Control, balance control, intelligent controller and two wheel inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419
3 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Sheam-Chyun Lin, Shin-Ham Lee

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: synchronization control, balance control, TWIP, two wheel inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1121
2 The Effects of Neuromuscular Training on Limits of Stability in Female Individuals

Authors: Yen-Ting Wang, Alex J.Y. Lee, Yu-Tien Tsai, Tzuhui A. Tseng, I-Tsun Chiang

Abstract:

This study examined the effects of neuromuscular training (NT) on limits of stability (LOS) in female individuals. Twenty female basketball amateurs were assigned into NT experimental group or control group by volunteer. All the players were underwent regular basketball practice, 90 minutes, 3 times per week for 6 weeks, but the NT experimental group underwent extra NT with plyometric and core training, 50 minutes, 3 times per week for 6 weeks during this period. Limits of stability (LOS) were evaluated by the Biodex Balance System. One factor ANCOVA was used to examine the differences between groups after training. The significant level for statistic was set at p<.05. Results showed that the right direction LOS scores at level 3 indicated a significant interaction between the trained/untrained groups × pre/post repeated measures with post-training scores higher than pre-training scores in the NT experimental group. The study demonstrated that Six weeks NT can improve the postural stability in young female individuals.

Keywords: balance control, neuromuscular control and posture stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
1 A Stable Pose Estimation Method for the Biped Robot using Image Information

Authors: Youngjoon Han, Sangbum Park

Abstract:

This paper proposes a balance control scheme for a biped robot to trace an arbitrary path using image information. While moving, it estimates the zero moment point(ZMP) of the biped robot in the next step using a Kalman filter and renders an appropriate balanced pose of the robot. The ZMP can be calculated from the robot's pose, which is measured from the reference object image acquired by a CCD camera on the robot's head. For simplifying the kinematical model, the coordinates systems of individual joints of each leg are aligned and the robot motion is approximated as an inverted pendulum so that a simple linear dynamics, 3D-LIPM(3D-Linear Inverted Pendulum Mode) can be applied. The efficiency of the proposed algorithm has been proven by the experiments performed on unknown trajectory.

Keywords: Kalman Filter, balance control, biped robot, Zero moment point

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031