Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1

Publications

1 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran

Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid

Abstract:

Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.

Keywords: Neural Networks, Modeling, soil organic carbon, CDA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104