Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Publications

3 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads

Authors: T. H. Young, Y. J. Tsai

Abstract:

A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work.  The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.

Keywords: stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152
2 Dynamic Stability of Axially Moving Viscoelastic Plates under Non-Uniform In-Plane Edge Excitations

Authors: T. H. Young, S. J. Huang, Y. S. Chiu

Abstract:

This paper investigates the parametric stability of an axially moving web subjected to non-uniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the non-uniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work.

Keywords: axially moving viscoelastic plate, dynamic stability, in-plane periodic excitation, non-uniformly distributed edge tension

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1 In-Plane Responses of Axially Moving Plates Subjected to Arbitrary Edge Excitations

Authors: T. H. Young, Y. S. Ciou

Abstract:

The free and forced in-plane vibrations of axially moving plates are investigated in this work. The plate possesses an internal damping of which the constitutive relation obeys the Kelvin-Voigt model, and the excitations are arbitrarily distributed on two opposite edges. First, the equations of motion and the boundary conditions of the axially moving plate are derived. Then, the extended Ritz method is used to obtain discretized system equations. Finally, numerical results for the natural frequencies and the mode shapes of the in-plane vibration and the in-plane response of the moving plate subjected to arbitrary edge excitations are presented. It is observed that the symmetry class of the mode shapes of the in-plane vibration disperses gradually as the moving speed gets higher, and the u- and v-components of the mode shapes belong to different symmetry class. In addition, large response amplitudes having shapes similar to the mode shapes of the plate can be excited by the edge excitations at the resonant frequencies and with the same symmetry class of distribution as the u-components.

Keywords: Arbitrary edge excitations, axially moving plates, in-plane vibration, extended Ritz method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444