Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Publications

2 Application of Novel Conserving Immersed Boundary Method to Moving Boundary Problem

Authors: S. N. Hosseini, S. M. H. Karimian

Abstract:

A new conserving approach in the context of Immersed Boundary Method (IBM) is presented to simulate one dimensional, incompressible flow in a moving boundary problem. The method employs control volume scheme to simulate the flow field. The concept of ghost node is used at the boundaries to conserve the mass and momentum equations. The Present method implements the conservation laws in all cells including boundary control volumes. Application of the method is studied in a test case with moving boundary. Comparison between the results of this new method and a sharp interface (Image Point Method) IBM algorithm shows a well distinguished improvement in both pressure and velocity fields of the present method. Fluctuations in pressure field are fully resolved in this proposed method. This approach expands the IBM capability to simulate flow field for variety of problems by implementing conservation laws in a fully Cartesian grid compared to other conserving methods.

Keywords: Immersed Boundary Method, conservation of mass and momentum laws, moving boundary, boundary condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
1 A Hybrid Overset Algorithm for Aerodynamic Problems with Moving Objects

Authors: S. M. H. Karimian, F. S. Salehi, H. Alisadeghi

Abstract:

A two-dimensional moving mesh algorithm is developed to simulate the general motion of two rotating bodies with relative translational motion. The grid includes a background grid and two sets of grids around the moving bodies. With this grid arrangement rotational and translational motions of two bodies are handled separately, with no complications. Inter-grid boundaries are determined based on their distances from two bodies. In this method, the overset concept is applied to hybrid grid, and flow variables are interpolated using a simple stencil. To evaluate this moving mesh algorithm unsteady Euler flow is solved for different cases using dual-time method of Jameson. Numerical results show excellent agreement with experimental data and other numerical results. To demonstrate the capability of present algorithm for accurate solution of flow fields around moving bodies, some benchmark problems have been defined in this paper.

Keywords: Moving mesh, Overset grid, Unsteady Euler, Relative motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341