Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Publications

3 Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

Authors: Waraporn Apiwatanapiwat, Pilanee Vaithanomsat, Phanu Somkliang, Taweesiri Malapant

Abstract:

This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reaction was controlled at temperature 50 °C in water bath for 45 minutes. After that, the supernatant (protein hydrolysate) was separated using centrifuge at 8000g for 30 minutes. The maximum yield of resulting protein hydrolysate was 73.27 % with 7.34% moisture, 71.69% total protein, 7.12% lipid, 2.49% ash. The product was also capable of well dissolving in water.

Keywords: Production, protein hydrolysate, Jatropha curcas cake, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
2 Feasibility Study on Vanillin Production from Jatropha curcas Stem Using Steam Explosion as a Pretreatment

Authors: Pilanee Vaithanomsat, Waraporn Apiwatanapiwat

Abstract:

Jatropha curcas stem was analyzed for chemical compositions: 19.11% pentosan, 42.99% alphacellulose and 24.11% lignin based on dry weight of 100-g raw material. The condition to fractionate cellulose, hemicellulose and lignin in J. curcas stem using steam explosion was optimized. The procedure started from cutting J. curcas stem into small pieces and soaked in water for overnight. After that, they were steam exploded at 214 °C and 21 kg/cm2 for 5 min. The obtained hydrolysate contained 1.55 g/L ferulic acid which after that was used as substrate for vanillin production by Aspergillus niger and Pycnoporus cinnabarinus in one-step process. The maximum 0.65 g/L of vanillin were obtained with the conversion rate of 45.2% based on the initial ferulic acid.

Keywords: Vanillin, production, Jatropha curcas stem, steam explosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1 Bioethanol Production from Enzymatically Saccharified Sunflower Stalks Using Steam Explosion as Pretreatment

Authors: Pilanee Vaithanomsat, Sinsupha Chuichulcherm, Waraporn Apiwatanapiwat

Abstract:

Sunflower stalks were analysed for chemical compositions: pentosan 15.84%, holocellulose 70.69%, alphacellulose 45.74%, glucose 27.10% and xylose 7.69% based on dry weight of 100-g raw material. The most optimum condition for steam explosion pretreatment was as follows. Sunflower stalks were cut into small pieces and soaked in 0.02 M H2SO4 for overnight. After that, they were steam exploded at 207 C and 21 kg/cm2 for 3 minutes to fractionate cellulose, hemicellulose and lignin. The resulting hydrolysate, containing hemicellulose, and cellulose pulp contained xylose sugar at 2.53% and 7.00%, respectively.The pulp was further subjected to enzymatic saccharification at 50 C, pH 4.8 citrate buffer) with pulp/buffer 6% (w/w)and Celluclast 1.5L/pulp 2.67% (w/w) to obtain single glucose with maximum yield 11.97%. After fixed-bed fermentation under optimum condition using conventional yeast mixtures to produce bioethanol, it indicated maximum ethanol yield of 0.028 g/100 g sunflower stalk.

Keywords: Enzymatic, steam explosion, sunflower stalk, ethanol production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF