**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**5

# Publications

##### 5 Influence of Confined Acoustic Phonons on the Shubnikov â€“ de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice

**Authors:**
Pham Ngoc Thang,
Le Thai Hung,
Nguyen Quang Bau

**Abstract:**

The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number *m* characterizing the effect of confined acoustic phonons. When *m* goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the *GaAs:Si/GaAs:Be *DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.

**Keywords:**
Shubnikovâ€“de Haas magnetoresistance oscillations,
quantum kinetic equation,
confined acoustic phonons,
laser radiation,
doped semiconductor superlattices.

##### 4 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

**Authors:**
Hoang Van Ngoc,
Nguyen Vu Nhan,
Nguyen Quang Bau

**Abstract:**

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

**Keywords:**
The light-effect,
cylindrical quantum wire with an infinite potential,
the density of the direct current,
electrons - optical phonon scattering.

##### 3 Hall Coefficient in the Presence of Strong Electromagnetic Waves Caused by Confined Electrons and Phonons in a Rectangular Quantum Wire

**Authors:**
Nguyen Quang Bau,
Nguyen Thu Huong,
Dang Thi Thanh Thuy

**Abstract:**

**Keywords:**
Hall coefficient,
rectangular quantum wires,
electron-optical phonon interaction,
quantum kinetic equation,
confined phonons.

##### 2 The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

**Authors:**
Hoang Van Ngoc,
Nguyen Thu Huong,
Nguyen Quang Bau

**Abstract:**

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

**Keywords:**
Photon-drag effect,
constant current density,
quantum wire,
parabolic potential.

##### 1 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation

**Authors:**
Nguyen Thu Huong,
Nguyen Quang Bau

**Abstract:**

**Keywords:**
Hall coefficient,
rectangular quantum wires,
electron-optical phonon interaction,
quantum kinetic equation.