Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Publications

7 On the Differential Geometry of the Curves in Minkowski Space-Time II

Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut

Abstract:

In the first part of this paper [6], a method to determine Frenet apparatus of the space-like curves in Minkowski space-time is presented. In this work, the mentioned method is developed for the time-like curves in Minkowski space-time. Additionally, an example of presented method is illustrated.

Keywords: Frenet Apparatus, Time-like Curves, MinkowskiSpace-time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
6 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation

Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu

Abstract:

In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.

Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
5 A Method to Calculate Frenet Apparatus of W-Curves in the Euclidean 6-Space

Authors: Süha Yılmaz, Melih Turgut

Abstract:

These In this work, a regular unit speed curve in six dimensional Euclidean space, whose Frenet curvatures are constant, is considered. Thereafter, a method to calculate Frenet apparatus of this curve is presented.

Keywords: Classical Differential Geometry, Euclidean 6-space, Frenet Apparatus of the curves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
4 On Frenet-Serret Invariants of Non-Null Curves in Lorentzian Space L5

Authors: Melih Turgut, José Luis López-Bonilla, Süha Yılmaz

Abstract:

The aim of this paper is to determine Frenet-Serret invariants of non-null curves in Lorentzian 5-space. First, we define a vector product of four vectors, by this way, we present a method to calculate Frenet-Serret invariants of the non-null curves. Additionally, an algebraic example of presented method is illustrated.

Keywords: Lorentzian 5-space, Frenet-Serret Invariants, Nonnull Curves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
3 A Method to Calculate Frenet Apparatus of the Curves in Euclidean-5 Space

Authors: Süha Yılmaz, Melih Turgut

Abstract:

In this paper, a method to calculate Frenet Apparatus of the curves in five dimensional Euclidean space is presented.

Keywords: Classical Differential Geometry, Frenet Apparatus, Euclidean-5 space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
2 Some Characterizations of Isotropic Curves In the Euclidean Space

Authors: Süha Yılmaz, Melih Turgut

Abstract:

The curves, of which the square of the distance between the two points equal to zero, are called minimal or isotropic curves [4]. In this work, first, necessary and sufficient conditions to be a Pseudo Helix, which is a special case of such curves, are presented. Thereafter, it is proven that an isotropic curve-s position vector and pseudo curvature satisfy a vector differential equation of fourth order. Additionally, In view of solution of mentioned equation, position vector of pseudo helices is obtained.

Keywords: Classical Differential Geometry, Euclidean space, Minimal Curves, Isotropic Curves, Pseudo Helix

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
1 Contributions to Differential Geometry of Pseudo Null Curves in Semi-Euclidean Space

Authors: Melih Turgut, Süha Yılmaz

Abstract:

In this paper, first, a characterization of spherical Pseudo null curves in Semi-Euclidean space is given. Then, to investigate position vector of a pseudo null curve, a system of differential equation whose solution gives the components of the position vector of a pseudo null curve on the Frenet axis is established by means of Frenet equations. Additionally, in view of some special solutions of mentioned system, characterizations of some special pseudo null curves are presented.

Keywords: Semi-Euclidean Space, Pseudo Null Curves, Position Vectors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038