Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1

Publications

1 Texture Feature Extraction using Slant-Hadamard Transform

Authors: M. J. Nassiri, A. Vafaei, A. Monadjemi

Abstract:

Random and natural textures classification is still one of the biggest challenges in the field of image processing and pattern recognition. In this paper, texture feature extraction using Slant Hadamard Transform was studied and compared to other signal processing-based texture classification schemes. A parametric SHT was also introduced and employed for natural textures feature extraction. We showed that a subtly modified parametric SHT can outperform ordinary Walsh-Hadamard transform and discrete cosine transform. Experiments were carried out on a subset of Vistex random natural texture images using a kNN classifier.

Keywords: Texture Analysis, Slant Transform, Hadamard, DCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF