Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Publications

6 Development of Palm Kernel Shell Lightweight Masonry Mortar

Authors: Kazeem K. Adewole

Abstract:

There need to construct building walls with lightweight masonry bricks/blocks and mortar to reduce the weight and cost of cooling/heating of buildings in hot/cold climates is growing partly due to legislations on energy use and global warming. In this paper, the development of Palm Kernel Shell masonry mortar (PKSMM) prepared with Portland cement and crushed PKS fine aggregate (an agricultural waste) is demonstrated. We show that PKSMM can be used as a lightweight mortar for the construction of lightweight masonry walls with good thermal insulation efficiency than the natural river sand commonly used for masonry mortar production.

Keywords: Building walls, fine aggregate, lightweight masonry mortar, palm kernel shell, wall thermal insulation efficacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
5 Effect of Nigerian Portland-Limestone Cement Grades on Concrete Compressive Strength

Authors: Kazeem K. Adewole, Festus. A. Olutoge, Hamzat Habib

Abstract:

In this paper, the effect of grades 32.4 and 42.5 Portland-limestone cements generally used for concrete production in Nigeria on concrete compressive strength is investigated. Investigation revealed that the compressive strength of concrete produced with Portland-limestone cement grade 42.5 is generally higher than that produced with cement grade 32.5. The percentage difference between the compressive strengths of the concrete cubes produced with Portland-limestone cement grades 42.5 and 32.5 is inversely proportional to the richness of the concrete with the highest and the least percentage difference associated with the 1:2:4 and 1:1:2 mix ratios respectively. It is recommended that cement grade 42.5 be preferred for construction in Nigeria as this will lead to the construction of stronger concrete structures, which will reduce the incidence of failure of building and other concrete structures at no additional cost since the cost of both cement grades are the same.

Keywords: Cement grades, Concrete, Compressive strength, Portland-limestone cement, Ordinary Portland cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3355
4 Incessant Collapse of Buildings in Nigeria: The Possible Role of the Use of Inappropriate Cement Grade/Strength Class

Authors: Kazeem K. Adewole, Joy-Felicia O. Oladejo, Wasiu O. Ajagbe

Abstract:

The use of low quality concrete has been identified as one of the main causes of the incessant collapse of buildings in Nigeria. Emphasis has been on the use of poor quality aggregates, poor workmanship and the use of lean concrete mix with low cement quantity as the reasons for the low quality of concrete used for building construction in Nigeria. Surveys conducted revealed that in the construction of most privately owned buildings where concrete trial mixes and concrete compressive strength quality assurance tests are not conducted, concretes used for building constructions are produced using the 1:2:4 mix ratio irrespective of the cement grade/strength class. In this paper, the possible role of the use of inappropriate cement grade/strength class as a cause of the incessant collapse of building in Nigeria is investigated. Investigation revealed that the compressive strengths of concrete cubes produced with Portland-limestone cement grade 32.5 using 1:2:4 and 1:1.5:3 mix ratios are less than the 25MPa and 30MPa cube strengths generally recommended for building superstructures and foundations respectively. Conversely, the compressive strengths of concrete cubes produced with Portland-limestone cement grade 42.5 using 1:2:4 and 1:1.5:3 mix ratios exceed the 25MPa and 30MPa generally recommended for building superstructures and foundations respectively. Thus, it can be concluded that the use of inappropriate cement grade (Portland-limestone cement grade 32.5), particularly for the construction of building foundations is a potential cause of the incessant collapse of buildings in Nigeria. It is recommended that the Standards Organisation of Nigeria should embark on creating awareness for Nigerians, particularly, the home owners and the roadside craftsmen that Portland-limestone cement grade 32.5 should not be used for the construction of building load-carrying members, particularly, building foundations in order to reduce the incessant incidence of collapsed building.

Keywords: Cement grades, Concrete strength class, Collapsed building, Concrete mix ratio, Portland-limestone cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
3 Effect of the Portland-Limestone Cement Grades on the Compressive Strength of Hollow Sandcrete Blocks

Authors: Kazeem K. Adewole, Gbenga. M. Ayininula, Wasiu O. Ajagbe, Olabisi Akinade

Abstract:

The commercial sandcrete block makers in Nigeria use the same cement-sand mix ratio for sandcrete blocks production irrespective of the cement grade. Investigation revealed that the compressive strengths of hollow sandcrete blocks produced with Portland-limestone cement grade 42.5 are higher than the sandcrete blocks produced with cement grade 32.5. The use of stronger sandcrete blocks produced with cement grade 42.5 will ensure the construction of stronger buildings and other sandcrete blocks-based infrastructures and reduce the incessant failure of building and other sandcrete blocks-based infrastructures in Nigeria at no additional cost as both cement grades cost the same amount in Nigeria. It is recommended that the Standards Organisation of Nigeria should create grassroots awareness on the different cement grades in Nigeria and specify that Portland-limestone cement grade 42.5 be used for sandcrete blocks production.

 

Keywords: Cement grades, Compressive strength, Sandcrete blocks, Portland-limestone cement, Nigerian cement market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
2 Identification of Micromechanical Fracture Model for Predicting Fracture Performance of Steel Wires for Civil Engineering Applications

Authors: Kazeem K. Adewole, Julia M. Race, Steve J. Bull

Abstract:

The fracture performance of steel wires for civil engineering applications remains a major concern in civil engineering construction and maintenance of wire reinforced structures. The need to employ approaches that simulate micromechanical material processes which characterizes fracture in civil structures has been emphasized recently in the literature. However, choosing from the numerous micromechanics-based fracture models, and identifying their applicability and reliability remains an issue that still needs to be addressed in a greater depth. Laboratory tensile testing and finite element tensile testing simulations with the shear, ductile and Gurson-Tvergaard-Needleman’s micromechanics-based models conducted in this work reveal that the shear fracture model is an appropriate fracture model to predict the fracture performance of steel wires used for civil engineering applications. The need to consider the capability of the micromechanics-based fracture model to predict the “cup and cone” fracture exhibited by the wire in choosing the appropriate fracture model is demonstrated.

Keywords: Fracture performance, FE simulation, Shear fracture model, Ductile fracture model, Gurson-Tvergaard-Needleman fracture model, Wires.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
1 Effect of Miniature Cracks on the Fracture Strength and Strain of Tensile Armour Wires

Authors: Kazeem K. Adewole, Steve J. Bull

Abstract:

Tensile armour wires provide a flexible pipe's resistance to longitudinal stresses. Flexible pipe manufacturers need to know the effect of defects such as scratches and cracks, with dimensions less than 0.2mm which is the limit of the current nondestructive detection technology, on the fracture stress and fracture strain of the wire for quality assurance purposes. Recent research involving the determination of the fracture strength of cracked wires employed laboratory testing and classical fracture mechanics approach using non-standardised fracture mechanics specimens because standard test specimens could not be manufactured from the wires owing to their sizes. In this work, the effect of miniature cracks on the fracture properties of tensile armour wires was investigated using laboratory and finite element tensile testing simulations with the phenomenological shear fracture model. The investigation revealed that the presence of cracks shallower than 0.2mm is worse on the fracture strain of the wire.

Keywords: Cracks, Finite Element Simulations, Fracture Mechanics, Shear Fracture Model, Tensile Armour Wire

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496