Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Publications

3 Delay-Distribution-Dependent Stability Criteria for BAM Neural Networks with Time-Varying Delays

Authors: J.H. Park, S. Lakshmanan, H.Y. Jung, S.M. Lee

Abstract:

This paper is concerned with the delay-distributiondependent stability criteria for bidirectional associative memory (BAM) neural networks with time-varying delays. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-probability-distribution-dependent sufficient condition is derived to achieve the globally asymptotically mean square stable of the considered BAM neural networks. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulation is given to demonstrate the usefulness and effectiveness of the proposed results.

Keywords: BAM neural networks, Probabilistic time-varying delays, Stability criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
2 Controlled Synchronization of an Array of Nonlinear System with Time Delays

Authors: S.M. Lee, J.H. Koo, J.H. Park, S.C. Won

Abstract:

In this paper, we propose synchronization of an array of nonlinear systems with time delays. The array of systems is decomposed into isolated systems to establish appropriate Lyapunov¬Krasovskii functional. Using the Lyapunov-Krasovskii functional, a sufficient condition for the synchronization is derived in terms of LMIs(Linear Matrix Inequalities). Delayed feedback control gains are obtained by solving the sufficient condition. Numerical examples are given to show the validity the proposed method.

Keywords: Synchronization, Delay, Lyapunov method, LMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1 Adaptive Functional Projective Lag Synchronization of Lorenz System

Authors: Tae H. Lee, J.H. Park, S.M. Lee, H.Y. Jung

Abstract:

This paper addresses functional projective lag synchronization of Lorenz system with four unknown parameters, where the output of the master system lags behind the output of the slave system proportionally. For this purpose, an adaptive control law is proposed to make the states of two identical Lorenz systems asymptotically synchronize up. Based on Lyapunov stability theory, a novel criterion is given for asymptotical stability of the null solution of an error dynamics. Finally, some numerical examples are provided to show the effectiveness of our results.

Keywords: Adaptive function projective synchronization, Chaotic system, Lag synchronization, Lyapunov method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF