Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Publications

4 Approximating Maximum Speed on Road from Curvature Information of Bezier Curve

Authors: M. Y. Misro, A. Ramli, J. M. Ali

Abstract:

Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use different approach to find the best approximation for the curve so that it will resembles highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first, the Bezier curve estimates the real shape of the curve which can be verified visually. Even though, fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed are acceptable. We verified our result with the manual calculation of the curvature from the map.

Keywords: Speed estimation, path constraints, reference trajectory, Bezier curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3453
3 New Explicit Group Newton's Iterative Methods for the Solutions of Burger's Equation

Authors: Tan K. B., Norhashidah Hj. M. Ali

Abstract:

In this article, we aim to discuss the formulation of two explicit group iterative finite difference methods for time-dependent two dimensional Burger-s problem on a variable mesh. For the non-linear problems, the discretization leads to a non-linear system whose Jacobian is a tridiagonal matrix. We discuss the Newton-s explicit group iterative methods for a general Burger-s equation. The proposed explicit group methods are derived from the standard point and rotated point Crank-Nicolson finite difference schemes. Their computational complexity analysis is discussed. Numerical results are given to justify the feasibility of these two proposed iterative methods.

Keywords: Standard point Crank-Nicolson (CN), Rotated point Crank-Nicolson (RCN), Explicit Group (EG), Explicit Decoupled Group (EDG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
2 The Analysis of Duct Model Through Structural and Dynamic Schemes

Authors: S. H. Yahaya, J. M. Ali, M. R. Arham

Abstract:

This paper presents the analysis of duct design using static and dynamic approaches. The static approach is used to find out applicability between the design and material applied. The material used in this paper is Thermoplastic Olefins (TPO). For the dynamic approach, the focusing is only on the CFD simulations. The fatigue life in this design and material applied also covered.

Keywords: CFD, structural analysis, fluid analysis, duct design, fatigue life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1 Parametric Transition as a Spiral Curve and Its Application in Spur Gear Tooth with FEA

Authors: S. H. Yahaya, J. M. Ali, T.A. Abdullah

Abstract:

The exploration of this paper will focus on the Cshaped transition curve. This curve is designed by using the concept of circle to circle where one circle lies inside other. The degree of smoothness employed is curvature continuity. The function used in designing the C-curve is Bézier-like cubic function. This function has a low degree, flexible for the interactive design of curves and surfaces and has a shape parameter. The shape parameter is used to control the C-shape curve. Once the C-shaped curve design is completed, this curve will be applied to design spur gear tooth. After the tooth design procedure is finished, the design will be analyzed by using Finite Element Analysis (FEA). This analysis is used to find out the applicability of the tooth design and the gear material that chosen. In this research, Cast Iron 4.5 % Carbon, ASTM A-48 is selected as a gear material.

Keywords: Bézier-like cubic function, Curvature continuity, Cshapedtransition curve, Spur gear tooth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977