Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

Publications

9 Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process

Authors: Amin Esmaeilzadeh, Mohammad Sadeghi, Farhad Kolahan

Abstract:

Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and increase the quality of welded plates, a fixture can be used as a practical and low cost method with high efficiency. In this study, a coupled thermo-mechanical finite element model is coded in the software ANSYS to simulate the behavior of thin plates located by a 3-2-1 positioning system during the welding process. Computational results are compared with recent similar works to validate the finite element models. The agreement between the result of proposed model and other reported data proves that finite element modeling can accurately predict the behavior of welded thin plates.

Keywords: welding, Finite Element Modelling, thin plate, buckling distortion, fixture locators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
8 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini

Abstract:

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Keywords: Statistical Analysis, Taguchi method, S/N ratio, turning parameters, tool geometry specifications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
7 A Heuristic Algorithm Approach for Scheduling of Multi-criteria Unrelated Parallel Machines

Authors: Farhad Kolahan, Vahid Kayvanfar

Abstract:

In this paper we address a multi-objective scheduling problem for unrelated parallel machines. In unrelated parallel systems, the processing cost/time of a given job on different machines may vary. The objective of scheduling is to simultaneously determine the job-machine assignment and job sequencing on each machine. In such a way the total cost of the schedule is minimized. The cost function consists of three components, namely; machining cost, earliness/tardiness penalties and makespan related cost. Such scheduling problem is combinatorial in nature. Therefore, a Simulated Annealing approach is employed to provide good solutions within reasonable computational times. Computational results show that the proposed approach can efficiently solve such complicated problems.

Keywords: Scheduling, simulated annealing, makespan, Parallel machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
6 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.

Keywords: Optimization, Mathematical Modeling, simulated annealing, AWJ cutting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
5 A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

Keywords: Optimization, Mathematical Modeling, simulated annealing, AWJ machining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
4 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW

Authors: Farhad Kolahan, Mehdi Heidari

Abstract:

Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

Keywords: Modeling, Weld Bead Geometry, GMAW welding, Processparameters Optimization, SA algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
3 Modeling and Optimization of Process Parameters in PMEDM by Genetic Algorithm

Authors: Farhad Kolahan, Mohammad Bironro

Abstract:

This paper addresses modeling and optimization of process parameters in powder mixed electrical discharge machining (PMEDM). The process output characteristics include metal removal rate (MRR) and electrode wear rate (EWR). Grain size of Aluminum powder (S), concentration of the powder (C), discharge current (I) pulse on time (T) are chosen as control variables to study the process performance. The experimental results are used to develop the regression models based on second order polynomial equations for the different process characteristics. Then, a genetic algorithm (GA) has been employed to determine optimal process parameters for any desired output values of machining characteristics.

Keywords: Optimization, GeneticAlgorithm, Regression modeling, PMEDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
2 Optimizing Turning Parameters for Cylindrical Parts Using Simulated Annealing Method

Authors: Farhad Kolahan, Mahdi Abachizadeh

Abstract:

In this paper, a simulated annealing algorithm has been developed to optimize machining parameters in turning operation on cylindrical workpieces. The turning operation usually includes several passes of rough machining and a final pass of finishing. Seven different constraints are considered in a non-linear model where the goal is to achieve minimum total cost. The weighted total cost consists of machining cost, tool cost and tool replacement cost. The computational results clearly show that the proposed optimization procedure has considerably improved total operation cost by optimally determining machining parameters.

Keywords: Optimization, simulated annealing, Turning Operation, machining parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
1 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: simulated annealing, Compliance, Structural Optimization, C.V. product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582