Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Publications

4 Geometrically Non-Linear Free Vibration Analysis of Functionally Graded Rectangular Plates

Authors: El Bikri Khalid, Benamar Rhali, Boukhzer Abdenbi

Abstract:

In the present study, the problem of geometrically non-linear free vibrations of functionally graded rectangular plates (FGRP) is studied. The theoretical model, previously developed and based on Hamilton’s principle, is adapted here to determine the fundamental non-linear mode shape of these plates. Frequency parameters, displacements and stress are given for various power-law distributions of the volume fractions of the constituents and various aspect ratios. Good agreement with previous published results is obtained in the case of linear and non-linear analyses.

Keywords: functionally graded materials, non-linear vibration, rectangular plates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
3 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates

Authors: El Bikri Khalid, Benamar Rhali, Boutahar Lhoucine

Abstract:

In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.

Keywords: non-linear vibrations, annular plates, large amplitudes, FGM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
2 Geometrically Non-Linear Axisymmetric Free Vibrations of Thin Isotropic Annular Plates

Authors: El Bikri Khalid, Benamar Rhali, Boutahar Lhoucine

Abstract:

The effects of large vibration amplitudes on the first axisymetric mode shape of thin isotropic annular plates having both edges clamped are examined in this paper. The theoretical model based on Hamilton’s principle and spectral analysis by using a basis of Bessel’s functions is adapted ěžhere to the case of annular plates. The model effectively reduces the large amplitude free vibration problem to the solution of a set of non-linear algebraic equations.

The governing non-linear eigenvalue problem has been linearised in the neighborhood of each resonance and a new one-step iterative technique has been proposed as a simple alternative method of solution to determine the basic function contributions to the non-linear mode shape considered.

Numerical results are given for the first non-linear mode shape for a wide range of vibration amplitudes. For each value of the vibration amplitude considered, the corresponding contributions of the basic functions defining the non-linear transverse displacement function and the associated non-linear frequency, the membrane and bending stress distributions are given. By comparison with the iterative method of solution, it was found that the present procedure is efficient for a wide range of vibration amplitudes, up to at least 1.8 times the plate thickness,

Keywords: non-linear vibrations, annular plates, large vibration amplitudes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1 Large Vibration Amplitude of Circular Functionally Graded Plates Resting on Pasternak Foundations

Authors: El Kaak Rachid, El Bikri Khalid, Benamar Rhali

Abstract:

In the present study, the problem of geometrically nonlinear free vibrations of functionally graded circular plates (FGCP) resting on Pasternak elastic foundation with immovable ends was studied. The material properties of the functionally graded composites examined were assumed to be graded in the thickness direction and estimated through the rule of mixture. The theoretical model is based on the classical Plate theory and the Von Kármán geometrical nonlinearity assumptions. Hamilton’s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters, which are found to be in a good agreement with the published results dealing with the problem of functionally graded plates. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the FGCP has been studied. The effect of the linear and shearing foundations is to decrease the frequency ratio, where it increases with the effect of the nonlinear foundation stiffness. 

Keywords: functionally graded materials, non-linear vibrations, Pasternak foundation, Circular plates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786