Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Publications

3 The Pell Equation x2 − Py2 = Q

Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan

Abstract:

Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.

Keywords: Pell equation, solutions of Pell equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
2 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp

Authors: Ahmet Tekcan, Arzu Özkoç, Hatice Alkan

Abstract:

In this work, we consider the number of integer solutions of Diophantine equation D : y2 - 2yx - 3 = 0 over Z and also over finite fields Fp for primes p ≥ 5. Later we determine the number of rational points on curves Ep : y2 = Pp(x) = yp 1 + yp 2 over Fp, where y1 and y2 are the roots of D. Also we give a formula for the sum of x- and y-coordinates of all rational points (x, y) on Ep over Fp.

Keywords: Pell equation, Diophantine equation, Quadratic form

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
1 Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms II

Authors: Ahmet Tekcan, Arzu Özkoç

Abstract:

Let D = 1 be a positive non-square integer and let δ = √D or 1+√D 2 be a real quadratic irrational with trace t =δ + δ and norm n = δδ. Let γ = P+δ Q be a quadratic irrational for positive integers P and Q. Given a quadratic irrational γ, there exist a quadratic ideal Iγ = [Q, δ + P] and an indefinite quadratic form Fγ(x, y) = Q(x−γy)(x−γy) of discriminant Δ = t 2−4n. In the first section, we give some preliminaries form binary quadratic forms, quadratic irrationals and quadratic ideals. In the second section, we obtain some results on γ, Iγ and Fγ for some specific values of Q and P.

Keywords: Quadratic irrationals, quadratic ideals, indefinite quadratic forms, extended modular group

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923