Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Publications

7 A Comparison of Dilute Sulfuric and Phosphoric Acid Pretreatments in Biofuel Production from Corncobs

Authors: Jirakarn Nantapipat, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Biofuels, like biobutanol, have been recognized for being renewable and sustainable fuels which can be produced from lignocellulosic biomass. To convert lignocellulosic biomass to biofuel, pretreatment process is an important step to remove hemicelluloses and lignin to improve enzymatic hydrolysis. Dilute acid pretreatment has been successful developed for pretreatment of corncobs and the optimum conditions of dilute sulfuric and phosphoric acid pretreatment were obtained at 120 °C for 5 min with 15:1 liquid to solid ratio and 140 °C for 10 min with 10:1 liquid to solid ratio, respectively. The result shows that both of acid pretreatments gave the content of total sugar approximately 34–35 g/l. In case of inhibitor content (furfural), phosphoric acid pretreatment gives higher than sulfuric acid pretreatment. Characterizations of corncobs after pretreatment indicate that both of acid pretreatments can improve enzymatic accessibility and the better results present in corncobs pretreated with sulfuric acid in term of surface area, crystallinity, and composition analysis.

Keywords: Corncobs, Pretreatment, Sulfuric acid, Phosphoric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976
6 Effect of Catalyst Preparation on the Performance of CaO-ZnO Catalysts for Transesterification

Authors: Pathravut Klinklom, Apanee Luengnaruemitchai, Samai Jai-In

Abstract:

In this research, CaO-ZnO catalysts (with various Ca:Zn atomic ratios of 1:5, 1:3, 1:1, and 3:1) prepared by incipientwetness impregnation (IWI) and co-precipitation (CP) methods were used as a catalyst in the transesterification of palm oil with methanol for biodiesel production. The catalysts were characterized by several techniques, including BET method, CO2-TPD, and Hemmett Indicator. The effects of precursor concentration, and calcination temperature on the catalytic performance were studied under reaction conditions of a 15:1 methanol to oil molar ratio, 6 wt% catalyst, reaction temperature of 60°C, and reaction time of 8 h. At Ca:Zn atomic ratio of 1:3 gave the highest FAME value owing to a basic properties and surface area of the prepared catalyst.

Keywords: CaO, ZnO, Biodiesel, Impregnation, Coprecipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
5 Optimization of Two-Stage Pretreatment Combined with Microwave Radiation Using Response Surface Methodology

Authors: Jidapa Manaso, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Pretreatment is an essential step in the conversion of lignocellulosic biomass to fermentable sugar that used for biobutanol production. Among pretreatment processes, microwave is considered to improve pretreatment efficiency due to its high heating efficiency, easy operation, and easily to combine with chemical reaction. The main objectives of this work are to investigate the feasibility of microwave pretreatment to enhance enzymatic hydrolysis of corncobs and to determine the optimal conditions using response surface methodology. Corncobs were pretreated via two-stage pretreatment in dilute sodium hydroxide (2 %) followed by dilute sulfuric acid 1 %. Pretreated corncobs were subjected to enzymatic hydrolysis to produce reducing sugar. Statistical experimental design was used to optimize pretreatment parameters including temperature, residence time and solid-to-liquid ratio to achieve the highest amount of glucose. The results revealed that solid-to-liquid ratio and temperature had a significant effect on the amount of glucose.

Keywords: Corncobs, Microwave radiation, Pretreatment, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
4 Characterization of Corn Cobs from Microwave and Potassium Hydroxide Pretreatment

Authors: Boonyisa Wanitwattanarumlug, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

The complexity of lignocellulosic biomass requires a pretreatment step to improve the yield of fermentable sugars. The efficient pretreatment of corn cobs using microwave and potassium hydroxide and enzymatic hydrolysis was investigated. The objective of this work was to characterize the optimal condition of pretreatment of corn cobs using microwave and potassium hydroxide enhance enzymatic hydrolysis. Corn cobs were submerged in different potassium hydroxide concentration at varies temperature and resident time. The pretreated corn cobs were hydrolyzed to produce the reducing sugar for analysis. The morphology and microstructure of samples were investigated by Thermal gravimetric analysis (TGA, scanning electron microscope (SEM), X-ray diffraction (XRD). The results showed that lignin and hemicellulose were removed by microwave/potassium hydroxide pretreatment. The crystallinity of the pretreated corn cobs was higher than the untreated. This method was compared with autoclave and conventional heating method. The results indicated that microwave-alkali treatment was an efficient way to improve the enzymatic hydrolysis rate by increasing its accessibility hydrolysis enzymes.

Keywords: Corn cobs, Enzymatic hydrolysis, Microwave, Potassium hydroxide, Pretreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
3 Effect of Gold Loading on CeO2–Fe2O3 for Oxidative Steam Reforming of Methanol

Authors: Umpawan Satitthai, Apanee Luengnaruemitchai, Erdogan Gulari

Abstract:

In this study, oxidative steam reforming of methanol (OSRM) over a Au/CeO2–Fe2O3 catalyst prepared by a depositionprecipitation (DP) method was studied to produce hydrogen in order to feed a Proton Exchange Membrane Fuel Cell (PEMFC). The support (CeO2, Fe2O3, and CeO2–Fe2O3) were prepared by precipitation and co-precipitation methods. The impact of the support composition on the catalytic performance was studied by varying the Ce/(Ce+Fe) atomic ratio, it was found that the 1%Au/CF(0.25) calcined at 300 °C exhibited the highest catalytic activity in the whole temperature studied. In addition, the effect of Au content was investigated and 3%Au/CF(0.25) exhibited the highest activity under the optimum condition in the temperature range of 200 °C to 400 °C. The catalysts were characterized by various techniques: XRD, TPR, XRF, and UV-vis.

Keywords: CeO2, Fe2O3, Gold catalyst, Hydrogen production, Methanol, Oxidative steam reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
2 Biodiesel Production from Palm Oil using Heterogeneous Base Catalyst

Authors: Sirichai Chantara-arpornchai, Apanee Luengnaruemitchai, Samai Jai-In

Abstract:

In this study, the transesterification of palm oil with methanol for biodiesel production was studied by using CaO–ZnO as a heterogeneous base catalyst prepared by incipient-wetness impregnation (IWI) and co-precipitation (CP) methods. The reaction parameters considered were molar ratio of methanol to oil, amount of catalyst, reaction temperature, and reaction time. The optimum conditions–15:1 molar ratio of methanol to oil, a catalyst amount of 6 wt%, reaction temperature of 60 °C, and reaction time of 8 h–were observed. The effects of Ca loading, calcination temperature, and catalyst preparation on the catalytic performance were studied. The fresh and spent catalysts were characterized by several techniques, including XRD, TPR, and XRF.

Keywords: CaO, ZnO, biodiesel, heterogeneous catalyst, trans-esterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
1 Effect of Temperature and Time on Dilute Acid Pretreatment of Corn Cobs

Authors: Sirikarn Satimanont, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Lignocellulosic materials are new targeted source to produce second generation biofuels like biobutanol. However, this process is significantly resisted by the native structure of biomass. Therefore, pretreatment process is always essential to remove hemicelluloses and lignin prior to the enzymatic hydrolysis. The goals of pretreatment are removing hemicelluloses and lignin, increasing biomass porosity, and increasing the enzyme accessibility. The main goal of this research is to study the important variables such as pretreatment temperature and time, which can give the highest total sugar yield in pretreatment step by using dilute phosphoric acid. After pretreatment, the highest total sugar yield of 13.61 g/L was obtained under an optimal condition at 140°C for 10 min of pretreatment time by using 1.75% (w/w) H3PO4 and at 15:1 liquid to solid ratio. The total sugar yield of two-stage process (pretreatment+enzymatic hydrolysis) of 27.38 g/L was obtained.

Keywords: Butanol production, Corn cobs, Phosphoric acid, Pretreatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370