Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Publications

2 Project Complexity Indices based on Topology Features

Authors: Amer A. Boushaala

Abstract:

The heuristic decision rules used for project scheduling will vary depending upon the project-s size, complexity, duration, personnel, and owner requirements. The concept of project complexity has received little detailed attention. The need to differentiate between easy and hard problem instances and the interest in isolating the fundamental factors that determine the computing effort required by these procedures inspired a number of researchers to develop various complexity measures. In this study, the most common measures of project complexity are presented. A new measure of project complexity is developed. The main privilege of the proposed measure is that, it considers size, shape and logic characteristics, time characteristics, resource demands and availability characteristics as well as number of critical activities and critical paths. The degree of sensitivity of the proposed measure for complexity of project networks has been tested and evaluated against the other measures of complexity of the considered fifty project networks under consideration in the current study. The developed measure showed more sensitivity to the changes in the network data and gives accurate quantified results when comparing the complexities of networks.

Keywords: Network topology, Activity networks, Complexity index, Networkcomplexity measure, Project Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
1 Effect of One-Handed Pushing and Puling Strength at Different Handle Heights in Vertical Direction

Authors: Tarik H. Badi, Amer A. Boushaala

Abstract:

The purpose of this study was to measure the maximal isometric strength and to investigate the effects of different handleheights and elbow angles with respect to Mid. sagittal plane on the pushing and pulling strength in vertical direction. Eight male subjects performed a series of static strength measurement for each subject. The highest isometric strength was found in pulling at shoulder height (S.H.) (Mean = 60.29 lb., SD = 16.78 lb.) and the lowest isometric strength was found also in pulling at elbow height (E.H.) (Mean = 33.06 lb., SD = 6.56 lb.). Although the isometric strengths were higher at S.H than at E.H. for both activities, the maximal isometric strengths were compared statistically. ANOVA was performed. The results of the experiment revealed that there was a significant different between handle heights. However, there were no significant different between angles and activities, also no correlation between grip strength and activities.

Keywords: Pushing and pulling, one arm, vertical direction, isometric strength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736