Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Publications

7 Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: free vibration, functionally graded beam, Engesser-Timoshenko beam theory, Elastic Foundation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
6 Stability of Homogeneous Smart Beams based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies stability of homogeneous beams with piezoelectric layers subjected to axial load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter and foundation coefficient on the stability of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Homogeneous beam- Piezoelectric layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
5 Mechanical Buckling of Functionally Graded Engesser-Timoshenko Beams Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies mechanical buckling of functionally graded beams subjected to axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of dimensionless geometrical parameter, functionally graded index and foundation coefficient on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: mechanical buckling, Functionally graded beam- Engesser-Timoshenko beam theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
4 The Effects of Plate-Support Condition on Buckling Strength of Rectangular Perforated Plates under Linearly Varying In-Plane Normal Load

Authors: M. Tajdari, A. R. Nezamabadi, M. Naeemi, P. Pirali

Abstract:

Mechanical buckling analysis of rectangular plates with central circular cutout is performed in this paper. The finiteelement method is used to study the effects of plate-support conditions, aspect ratio, and hole size on the mechanical buckling strength of the perforated plates subjected to linearly varying loading. Results show that increasing the hole size does not necessarily reduce the mechanical buckling strength of the perforated plates. It is also concluded that the clamped boundary condition increases the mechanical buckling strength of the perforated plates more than the simply-supported boundary condition and the free boundary conditions enhance the mechanical buckling strength of the perforated plates more effectively than the fixed boundary conditions. Furthermore, for the bending cases, the critical buckling load of perforated plates with free edges is less than perforated plates with fixed edges.

Keywords: buckling, boundary condition, rectangular plates, Perforated plates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050
3 Mechanical Buckling of Engesser-Timoshenko Beams with a Pair of Piezoelectric Layers

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper presents the elastic buckling of homogeneous beams with a pair of piezoelectric layers surface bonded on both sides of the beams. The displacement field of beam is assumed based on the Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of applied voltage, dimensionless geometrical parameter and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: mechanical buckling, Engesser-Timoshenko beam theory - Piezoelectric layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
2 Stability of Functionally Graded Beams with Piezoelectric Layers Based on the First Order Shear Deformation Theory

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

Stability of functionally graded beams with piezoelectric layers subjected to axial compressive load that is simply supported at both ends is studied in this paper. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter, functionally graded index and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, functionally graded beam, piezoelectric layer, First order shear deformation theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
1 Dynamic Stability of Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies dynamic stability of homogeneous beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Bernoulli-Euler beam theory. Applying the Hamilton's principle, the governing dynamic equation is established. The influences of applied voltage, foundation coefficient and piezoelectric thickness on the unstable regions are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: dynamic stability, Homogeneous graded beam-Piezoelectric layer, Harmonic balance method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378