Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Publications

2 Synthesis of Peptide Amides using Sol-Gel Immobilized Alcalase in Batch and Continuous Reaction System

Authors: L. N. Corîci, A. E. Frissen, D -J. Van Zoelen, I. F. Eggen, F. Peter, C. M. Davidescu, C. G. Boeriu

Abstract:

Two commercial proteases from Bacillus licheniformis (Alcalase 2.4 L FG and Alcalase 2.5 L, Type DX) were screened for the production of Z-Ala-Phe-NH2 in batch reaction. Alcalase 2.4 L FG was the most efficient enzyme for the C-terminal amidation of Z-Ala-Phe-OMe using ammonium carbamate as ammonium source. Immobilization of protease has been achieved by the sol-gel method, using dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) as precursors (unpublished results). In batch production, about 95% of Z-Ala-Phe-NH2 was obtained at 30°C after 24 hours of incubation. Reproducibility of different batches of commercial Alcalase 2.4 L FG preparations was also investigated by evaluating the amidation activity and the entrapment yields in the case of immobilization. A packed-bed reactor (0.68 cm ID, 15.0 cm long) was operated successfully for the continuous synthesis of peptide amides. The immobilized enzyme retained the initial activity over 10 cycles of repeated use in continuous reactor at ambient temperature. At 0.75 mL/min flow rate of the substrate mixture, the total conversion of Z-Ala-Phe-OMe was achieved after 5 hours of substrate recycling. The product contained about 90% peptide amide and 10% hydrolysis byproduct.

Keywords: protease, packed-bed reactor, peptide amide, sol-gel immobilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
1 Lipase Catalyzed Synthesis of Aromatic Esters of Sugar Alcohols

Authors: R. Croitoru, L. A. M. van den Broek, A. E. Frissen, C. M. Davidescu, F. Peter, C. G. Boeriu

Abstract:

Commercially available lipases (Candida antarctica lipase B, Novozyme 435, Thermomyces lanuginosus lipase, and Lipozyme TL IM), as well as sol-gel immobilized lipases, have been screened for their ability to acylate regioselectively xylitol, sorbitol, and mannitol with a phenolic ester in a binary mixture of t-butanol and dimethylsulfoxide. HPLC and MALDI-TOF MS analysis revealed the exclusive formation of monoesters for all studied sugar alcohols. The lipases immobilized by the sol-gel entrapment method proved to be efficient catalysts, leading to high conversions (up to 60%) in the investigated acylation reactions. From a sequence of silane precursors with different nonhydrolyzable groups in their structure, the presence of octyl and i-butyl group was most beneficial for the catalytic activity of sol-gel entrapped lipases in the studied process.

Keywords: transesterification, specificity, lipase, phenolic ester, sugar alcohol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862