Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

arrhythmia Related Publications

4 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: GAUTAM SARKAR, Santanu Chattopadhyay, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: electrocardiogram, discrete wavelet transform, myocardial ischemia, arrhythmia, sleep apnea, congestive heart failure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86
3 Analysis of Electrocardiograph (ECG) Signal for the Detection of Abnormalities Using MATLAB

Authors: Durgesh Kumar Ojha, Monica Subashini

Abstract:

The proposed method is to study and analyze Electrocardiograph (ECG) waveform to detect abnormalities present with reference to P, Q, R and S peaks. The first phase includes the acquisition of real time ECG data. In the next phase, generation of signals followed by pre-processing. Thirdly, the procured ECG signal is subjected to feature extraction. The extracted features detect abnormal peaks present in the waveform Thus the normal and abnormal ECG signal could be differentiated based on the features extracted. The work is implemented in the most familiar multipurpose tool, MATLAB. This software efficiently uses algorithms and techniques for detection of any abnormalities present in the ECG signal. Proper utilization of MATLAB functions (both built-in and user defined) can lead us to work with ECG signals for processing and analysis in real time applications. The simulation would help in improving the accuracy and the hardware could be built conveniently.

Keywords: MATLAB, arrhythmia, peak detection, ECG Waveform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10871
2 Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation

Authors: Dejan Stantic, Jun Jo

Abstract:

ECG contains very important clinical information about the cardiac activities of the heart. Often the ECG signal needs to be captured for a long period of time in order to identify abnormalities in certain situations. Such signal apart of a large volume often is characterised by low quality due to the noise and other influences. In order to extract features in the ECG signal with time-varying characteristics at first need to be preprocessed with the best parameters. Also, it is useful to identify specific parts of the long lasting signal which have certain abnormalities and to direct the practitioner to those parts of the signal. In this work we present a method based on wavelet transform, standard deviation and variable threshold which achieves 100% accuracy in identifying the ECG signal peaks and heartbeat as well as identifying the standard deviation, providing a quick reference to abnormalities.

Keywords: Signal Processing, Wavelet Transform, standard deviation, arrhythmia, Electrocardiogram-ECG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
1 Diagnosing Dangerous Arrhythmia of Patients by Automatic Detecting of QRS Complexes in ECG

Authors: Jia-Rong Yeh, Jiann-Shing Shieh, Ai-Hsien Li, Yen-An Su, Chi-Yu Yang

Abstract:

In this paper, an automatic detecting algorithm for QRS complex detecting was applied for analyzing ECG recordings and five criteria for dangerous arrhythmia diagnosing are applied for a protocol type of automatic arrhythmia diagnosing system. The automatic detecting algorithm applied in this paper detected the distribution of QRS complexes in ECG recordings and related information, such as heart rate and RR interval. In this investigation, twenty sampled ECG recordings of patients with different pathologic conditions were collected for off-line analysis. A combinative application of four digital filters for bettering ECG signals and promoting detecting rate for QRS complex was proposed as pre-processing. Both of hardware filters and digital filters were applied to eliminate different types of noises mixed with ECG recordings. Then, an automatic detecting algorithm of QRS complex was applied for verifying the distribution of QRS complex. Finally, the quantitative clinic criteria for diagnosing arrhythmia were programmed in a practical application for automatic arrhythmia diagnosing as a post-processor. The results of diagnoses by automatic dangerous arrhythmia diagnosing were compared with the results of off-line diagnoses by experienced clinic physicians. The results of comparison showed the application of automatic dangerous arrhythmia diagnosis performed a matching rate of 95% compared with an experienced physician-s diagnoses.

Keywords: Signal Processing, arrhythmia, electrocardiography (ECG), QRS complex

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213