Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 38

Wind energy Related Abstracts

38 Exergy Analyses of Wind Turbine

Authors: Muhammad Abid


Utilization of renewable energy resources for energy conservation, pollution prevention, resource efficiency and systems integration is very important for sustainable development. In this study, we perform energy and exergy analyses of a wind turbine, located on the roof of Mechanical Engineering Department, King Saud University, and Riyadh, Saudi Arabia. The turbine is part of a hybrid photovoltaic (PV)-wind system with hydrogen storage. The power output from this turbine varies between 1.5 and 5.5 kW with a rated wind speed of 12 m/s and a cut-in wind speed of 2.4 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine energy and exergy efficiencies. The energy efficiency changes between 0% to 45% while the exergy efficiency varies between 0% and 31.3%. We also determined some of the exergoeconomic parameters that are the ratios of energy and exergy loss rates to the capital cost (R en and R ex), respectively. (R en) changes between 0.96% and 59.03% for different values of velocity while R ex has a maximum value of 53.62% for the highest wind speed.

Keywords: Wind energy, Performance Evaluation, Exergy, Efficiency

Procedia PDF Downloads 198
37 Meteorological Effect on Exergetic and Exergoeconomics Parameters of a Wind Turbine

Authors: Muhammad Abid


In this study, we performed the comparative exergetic and exergoeconomic analyses of a wind turbine over a period of twelve months from 1st January to 30th December 2011. The turbine is part of a wind-PV hybrid system with hydrogen storage, located on the roof of Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia. The rated power output from this turbine is 1.7 W with a rated wind speed of 12 m/s and cut-in/cut-out wind speeds of 3/14 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine exergy efficiencies and their relation with meteorological variables, such as temperature and density. We also calculate exergoeconomic parameter R ̇_ex and its dependence on the temperature, using the average values for twelve months of the year considered for comparison purposes. The exergy efficiency changes from 0.12 to 0.31 while the density varies between 1.31 and 1.2 kg/m3 for different temperature values. The R ̇_ex has minimum and maximum values of 0.02 and 0.81, respectively, while the temperature is in the range of 8-24°C for various wind velocity values.

Keywords: Renewable Energy, Wind energy, Exergy, Efficiency, Meteorological Variables

Procedia PDF Downloads 111
36 Study on the Impact of Default Converter on the Quality of Energy Produced by DFIG Based Wind Turbine

Authors: N. Zerzouri, N. Benalia, N. Bensiali


This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB/Simulink software illustrate the quality of the power generated at the default.

Keywords: Modeling, Wind energy, Doubly Fed Induction Generator (DFIG), PWM inverter

Procedia PDF Downloads 204
35 Power Management Strategy for Solar-Wind-Diesel Stand-Alone Hybrid Energy System

Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim


This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.

Keywords: Wind energy, Power management, Solar Photovoltaic, Diesel Engine, hybrid energy system, frequency and voltage regulation

Procedia PDF Downloads 282
34 The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power

Authors: Mohammadreza Heydariazad


Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value.

Keywords: Wind energy, generator, superconducting inductor, wind turbine power

Procedia PDF Downloads 190
33 Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips

Authors: K. Tahir, C. Belfedal, T. Allaoui, C. Gerard, M. Doumi


In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions.

Keywords: Wind energy, Power Control, Particle Swarm Optimization, maximum power point tracking, wound rotor synchronous generator, RST controller

Procedia PDF Downloads 319
32 Wind Energy Status in Turkey

Authors: Mustafa Engin Başoğlu, Bekir Çakir


Since large part of electricity generation is provided by using fossil based resources, energy is an important agenda for countries. Depletion of fossil resources, increasing awareness of climate change and global warming concerns are the major reasons for turning to alternative energy resources. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, wind energy is promising for Turkey whose installed power capacity increases approximately eight times between 2008 - seventh month of 2014. Signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish government has announced 2023 Vision (2023 targets) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). 2023 Energy targets can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Share of nuclear power plants in electricity generation will be 10% of total electricity generation by 2023. Dependence on foreign energy is reduced for sustainability and energy security. As of seventh month of 2014, total installed capacity of wind power plants is 3.42 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. MILRES is an important project aimed to promote the use of renewable sources in electricity generation. A 500 kW wind turbine will be produced in the first phase of project. Then 2.5 MW wind turbine will be manufactured domestically within this project

Keywords: Wind energy, Wind Speed, MILRES, wind energy potential in TURKEY

Procedia PDF Downloads 401
31 An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function

Authors: Ehsanolah Assareh, Mojtaba Biglari, Mojtaba Nedaei


Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds.

Keywords: Wind energy, Wind turbine, Iran, weibull, Sanar village

Procedia PDF Downloads 363
30 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight


In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: Wind energy, Wear, numerical model, grouted connection, offshore structure

Procedia PDF Downloads 286
29 Prediction of Wind Speed by Artificial Neural Networks for Energy Application

Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui


In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.

Keywords: Wind energy, Neural Network, MATLAB, Wind Speed, power low, vertical extrapolation

Procedia PDF Downloads 500
28 Analysis of Electricity Demand at Household Level Using Leap Model in Balochistan, Pakistan

Authors: Sheikh Saeed Ahmad


Electricity is vital for any state’s development that needs policy for planning the power network extension. This study is about simulation modeling for electricity in Balochistan province. Baseline data of electricity consumption was used of year 2004 and projected with the help of LEAP model up to subsequent 30 years. Three scenarios were created to run software. One scenario was baseline and other two were alternative or green scenarios i.e. solar and wind energy scenarios. Present study revealed that Balochistan has much greater potential for solar and wind energy for electricity production. By adopting these alternative energy forms, Balochistan can save energy in future nearly 23 and 48% by incorporating solar and wind power respectively. Thus, the study suggests to government planners, an aspect of integrating renewable sources in power system for ensuring sustainable development and growth.

Keywords: Wind energy, Solar energy, households, demand and supply, LEAP

Procedia PDF Downloads 298
27 Comprehensive Study of Renewable Energy Resources and Present Scenario in India

Authors: Aparna Bhat, Rajeshwari Hegde


Renewable energy sources also called non-conventional energy sources that are continuously replenished by natural processes. For example, solar energy, wind energy, bio-energy- bio-fuels grown sustain ably), hydropower etc., are some of the examples of renewable energy sources. A renewable energy system converts the energy found in sunlight, wind, falling-water, sea-waves, geothermal heat, or biomass into a form, we can use such as heat or electricity. Most of the renewable energy comes either directly or indirectly from sun and wind and can never be exhausted, and therefore they are called renewable. This paper presents a review about conventional and renewable energy scenario of India. The paper also presents current status, major achievements and future aspects of renewable energy in India and implementing renewable for the future is also been presented.

Keywords: Wind energy, Solar energy, biomass, renewabe energy, bio-diesel, feedin

Procedia PDF Downloads 416
26 Wind Power Potential in Selected Algerian Sahara Regions

Authors: M. Dahbi, M. Sellam, A. Benatiallah, A. Harrouz


The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria The main purpose of this paper is to compared and discuss the wind power potential in three sites located in sahara of Algeria (south west of Algeria) and to perform an investigation on the wind power potential of desert of Algeria. In this comparative, wind speed frequency distributions data obtained from the web site are used to calculate the average wind speed and the available wind power. The Weibull density function has been used to estimate the monthly power wind density and to determine the characteristics of monthly parameters of Weibull for these three sites. The annual energy produced by the BWC XL.1 1KW wind machine is obtained and compared. The analysis shows that in the south west of Algeria, at 10 m height, the available wind power was found to vary between 136.59 W/m2 and 231.04 W/m2. The highest potential wind power was found at Adrar, with 21h per day and the mean wind speed is above 6 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 512 KWh and 1643.2 kWh. However, the wind resource appears to be suitable for power production on the sahara and it could provide a viable substitute to diesel oil for irrigation pumps and rural electricity generation.

Keywords: Wind energy, Wind turbine, Weibull distribution, parameters of Wiebull, operating hours

Procedia PDF Downloads 332
25 A Study on Method for Identifying Capacity Factor Declination of Wind Turbines

Authors: Dongheon Shin, Kyungnam Ko, Jongchul Huh


The investigation on wind turbine degradation was carried out using the nacelle wind data. The three Vestas V80-2MW wind turbines of Sungsan wind farm in Jeju Island, South Korea were selected for this work. The SCADA data of the wind farm for five years were analyzed to draw power curve of the turbines. It is assumed that the wind distribution is the Rayleigh distribution to calculate the normalized capacity factor based on the drawn power curve of the three wind turbines for each year. The result showed that the reduction of power output from the three wind turbines occurred every year and the normalized capacity factor decreased to 0.12%/year on average.

Keywords: Wind energy, power curve, capacity factor, annual energy production

Procedia PDF Downloads 269
24 Dynamics Behavior of DFIG Wind Energy Conversion System Incase Dip Voltage

Authors: N. Zerzouri, N. Benalia, N. Bensiali


During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today’s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.

Keywords: Electrical Engineering, Wind energy, Doubly Fed Induction Generator (DFIG), grid fault

Procedia PDF Downloads 344
23 Design of 100 kW Induction Generator for Wind Power Plant at Tamanjaya Village-Sukabumi

Authors: Andri Setiyoso, Agus Purwadi, Nanda Avianto Wicaksono


This paper present about induction generator design for 100kW power output capacity. Induction machine had been chosen because of the capability for energy conversion from electric energy to mechanical energy and vise-versa with operation on variable speed condition. Stator Controlled Induction Generator (SCIG) was applied as wind power plant in Desa Taman Jaya, Sukabumi, Indonesia. Generator was designed to generate power 100 kW with wind speed at 12 m/s and survival condition at speed 21 m/s.

Keywords: Wind energy, Induction Generator, Stator Controlled Induction Generator (SCIG), variable speed generator

Procedia PDF Downloads 364
22 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Authors: Seshi Reddy Kasu, Florian Misoc


The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and/or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.

Keywords: Wind energy, battery bank, photo-voltaic, pump-storage

Procedia PDF Downloads 480
21 Starting Torque Study of Darrieus Wind Turbine

Authors: M. Douak, Z. Aouachria


The aim of our study is to project an optimized wind turbine of Darrieus type. This type of wind turbine is characterized by a low starting torque in comparison with the Savonius rotor allowing them to operate for a period greater than wind speed. This led us to reconsider the Darrieus rotor to optimize a design which will increase its starting torque. The study of a system of monitoring and control of the angle of attack of blade profile, which allows an auto start to wind speeds as low as possible is presented for the straight blade of Darrieus turbine. The study continues to extend to other configurations namely those of parabolic type.

Keywords: Wind energy, Darrieus turbine, pitch angle, self stating

Procedia PDF Downloads 212
20 Flux-Linkage Performance of DFIG Under Different Types of Faults and Locations

Authors: Mohamed Moustafa Mahmoud Sedky


The double-fed induction generator wind turbine has recently received a great attention. The steady state performance and response of double fed induction generator (DFIG) based wind turbine are now well understood. This paper presents the analysis of stator and rotor flux linkage dq models operation of DFIG under different faults and at different locations.

Keywords: Wind energy, short circuit, double fed induction motor, flux linkage

Procedia PDF Downloads 358
19 Analysis of Flux-Linkage Performance of DFIG by Using Simulink under Different Types of Faults and Locations

Authors: Mohamed Moustafa Mahmoud Sedky


The double-fed induction generator wind turbine has recently received a great attention. The steady state performance and response of double fed induction generator (DFIG) based wind turbine are now well understood. This paper presents the analysis of stator and rotor flux linkage dq models operation of DFIG under different faults and at different locations.

Keywords: Wind energy, short circuit, double fed induction motor, flux linkage

Procedia PDF Downloads 452
18 A Novel Fuzzy Second-Order Sliding Mode Control of a Doubly Fed Induction Generator for Wind Energy Conversion

Authors: Elhadj Bounadja, Mohand Oulhadj Mahmoudi, Abdelkader Djahbar, Zinelaabidine Boudjema


In this paper we present a novel fuzzy second-order sliding mode control (FSOSMC) for wind energy conversion system based on a doubly-fed induction generator (DFIG). The proposed control strategy combines a fuzzy logic and a second-order sliding mode for the DFIG control. This strategy presents attractive features such as chattering-free, compared to the conventional first and second order sliding mode techniques. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 1.5-MW wind turbine driven a DFIG using the Matlab/Simulink.

Keywords: Wind energy, doubly fed induction generator, fuzzy second-order sliding mode controller

Procedia PDF Downloads 383
17 Evaluation of Alternative Energy Sources for Energy Production in Turkey

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen


In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.

Keywords: Wind energy, Solar energy, Alternative energy sources, energy productions, hydroenergy

Procedia PDF Downloads 491
16 Application of Matrix Converter for the Power Control of a DFIG-Based Wind Turbine

Authors: E. Bounadja, M. O. Mahmoudi, A. Djahbar, Z. Boudjema


This paper presents a control approach of the doubly fed induction generator (DFIG) in conjunction with a direct AC-AC matrix converter used in generating mode. This device is intended to be implemented in a variable speed wind energy conversion system connected to the grid. Firstly, we developed a model of matrix converter, controlled by the Venturini modulation technique. In order to control the power exchanged between the stator of the DFIG and the grid, a control law is synthesized using a high order sliding mode controller. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 2-MW wind turbine driven a DFIG using the Matlab/Simulink.

Keywords: Wind energy, Doubly Fed Induction Generator (DFIG), matrix converter, high-order sliding mode controller

Procedia PDF Downloads 382
15 Off-Shore Wind Turbines: The Issue of Soil Plugging during Pile Installation

Authors: Mauro Iannazzone, Carmine D'Agostino


Off-shore wind turbines are currently considered as a reliable source of renewable energy Worldwide and especially in the UK. Most of the operational off-shore wind turbines located in shallow waters (i.e. < 30 m) are supported on monopiles. Monopiles are open-ended steel tubes with diameter ranging between 4 to 6 m. It is expected that future off-shore wind farms will be located in water depths as high as 70 m. Therefore, alternative foundation arrangements are needed. Foundations for off-shore structures normally consist of open-ended piles driven into the soil by means of impact hammers. During pile installation, the soil inside the pile may be mobilized by the increasing shear strength such as to prevent more soil from entering the pile. This phenomenon is known as soil plugging, and represents an important issue as it may change significantly the driving resistance of open-ended piles. In fact, if the plugging formation is unexpected, the installation may require more powerful and more expensive hammers. Engineers need to estimate whether the driven pile will be installed in a plugged or unplugged mode. As a consequence, a prediction of the degree of soil plugging is required in order to correctly predict the drivability of the pile. This work presents a brief review of the state-of-the-art of pile driving and approaches used to predict formation of soil plugs. In addition, a novel analytical approach is proposed, which is based on the vertical equilibrium of a plugged pile. Differently from previous studies, this research takes into account the enhancement of the stress within the soil plug. Finally, the work presents and discusses a series of experimental tests, which are carried out on small-scale models piles to validate the analytical solution.

Keywords: Wind energy, off-shore wind turbines, pile installation, soil plugging

Procedia PDF Downloads 145
14 Identify the Renewable Energy Potential through Sustainability Indicators and Multicriteria Analysis

Authors: Camila Lima, Murilo Andrade Valle, Patrícia Teixeira Leite Asano


The growth in demand for electricity, caused by human development, depletion and environmental impacts caused by traditional sources of electricity generation have made new energy sources are increasingly encouraged and necessary for companies in the electricity sector. Based on this scenario, this paper assesses the negative environmental impacts associated with thermoelectric power plants in Brazil, pointing out the importance of using renewable energy sources, reducing environmental aggression. This article points out the existence of an energy alternative, wind energy, of the municipalities of São Paulo, represented by georeferenced maps with the help of GIS, using as a premise the indicators of sustainability and multicriteria analysis in the decision-making process.

Keywords: Wind energy, Sustainability, multicriteria analysis, GIS (geographic information systems)

Procedia PDF Downloads 203
13 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation

Authors: Amir Jalalian-Khakshour, T. N. Croft


Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.

Keywords: Renewable Energy, Wind energy, Power Generation, Rotordynamics

Procedia PDF Downloads 175
12 The Development of Wind Energy and Its Social Acceptance: The Role of Income Received by Wind Farm Owners, the Case of Galicia, Northwest Spain

Authors: X. Simon, D. Copena, M. Montero


The last decades have witnessed a significant increase in renewable energy, especially wind energy, to achieve sustainable development. Specialized literature in this field has carried out interesting case studies to extensively analyze both the environmental benefits of this energy and its social acceptance. However, to the best of our knowledge, work to date makes no analysis of the role of private owners of lands with wind potential within a broader territory of strong wind implantation, nor does it estimate their economic incomes relating them to social acceptance. This work fills this gap by focusing on Galicia, territory housing over 4,000 wind turbines and almost 3,400 MW of power. The main difficulty in getting this financial information is that it is classified, not public. We develop methodological techniques (semi- structured interviews and work groups), inserted within the Participatory Research, to overcome this important obstacle. In this manner, the work directly compiles qualitative and quantitative information on the processes as well as the economic results derived from implementing wind energy in Galicia. During the field work, we held 106 semi-structured interviews and 32 workshops with owners of lands occupied by wind farms. The compiled information made it possible to create the socioeconomic database on wind energy in Galicia (SDWEG). This database collects a diversity of quantitative and qualitative information and contains economic information on the income received by the owners of lands occupied by wind farms. In the Galician case, regulatory framework prevented local participation under the community wind farm formula. The possibility of local participation in the new energy model narrowed down to companies wanting to install a wind farm and demanding land occupation. The economic mechanism of local participation begins here, thus explaining the level of acceptance of wind farms. Land owners can receive significant income given that these payments constitute an important source of economic resources, favor local economic activity, allow rural areas to develop productive dynamism projects and improve the standard of living of rural inhabitants. This work estimates that land owners in Galicia perceive about 10 million euros per year in total wind revenues. This represents between 1% and 2% of total wind farm invoicing. On the other hand, relative revenues (Euros per MW), far from the amounts reached in other spaces, show enormous payment variability. This signals the absence of a regulated market, the predominance of partial agreements, and the existence of asymmetric positions between owners and developers. Sustainable development requires the replacement of conventional technologies by low environmental impact technologies, especially those that emit less CO₂. However, this new paradigm also requires rural owners to participate in the income derived from the structural transformation processes linked to sustainable development. This paper demonstrates that regulatory framework may contribute to increasing sustainable technologies with high social acceptance without relevant local economic participation.

Keywords: Sustainable Development, Wind energy, Social Acceptance, Regulatory Framework, wind income for landowners

Procedia PDF Downloads 40
11 Experimental Verification of On-Board Power Generation System for Vehicle Application

Authors: Manish Kumar, Krupa Shah


The usage of renewable energy sources is increased day by day to overcome the dependency on fossil fuels. The wind energy is considered as a prominent source of renewable energy. This paper presents an approach for utilizing wind energy obtained from moving the vehicle for cell-phone charging. The selection of wind turbine, blades, generator, etc. is done to have the most efficient system. The calculation procedure for power generated and drag force is shown to know the effectiveness of the proposal. The location of the turbine is selected such that the system remains symmetric, stable and has the maximum induced wind. The calculation of the generated power at different velocity is presented. The charging is achieved for the speed 30 km/h and the system works well till 60 km/h. The model proposed seems very useful for the people traveling long distances in the absence of mobile electricity. The model is very economical and easy to fabricate. It has very less weight and area that makes it portable and comfortable to carry along. The practical results are shown by implementing the portable wind turbine system on two-wheeler.

Keywords: Wind energy, Vehicle, cell-phone charging, on-board power generation

Procedia PDF Downloads 154
10 Adaptive Nonlinear Control of a Variable Speed Horizontal Axis Wind Turbine: Controller for Optimal Power Capture

Authors: Rana M. Mostafa, Nouby M. Ghazaly, Ahmed S. Ali


This article introduces a solution for increasing the wind energy extracted from turbines to overcome the more electric power required. This objective provides a new science discipline; wind turbine control. This field depends on the development in power electronics to provide new control strategies for turbines. Those strategies should deal with all turbine operating modes. Here there are two control strategies developed for variable speed horizontal axis wind turbine for rated and over rated wind speed regions. These strategies will support wind energy validation, decrease manufacturing overhead cost. Here nonlinear adaptive method was used to design speed controllers to a scheme for ‘Aeolos50 kw’ wind turbine connected to permanent magnet generator via a gear box which was built on MATLAB/Simulink. These controllers apply maximum power point tracking concept to guarantee goal achievement. Procedures were carried to test both controllers efficiency. The results had been shown that the developed controllers are acceptable and this can be easily declared from simulation results.

Keywords: Wind energy, Nonlinear Control, adaptive method, pitch controller

Procedia PDF Downloads 112
9 Wind Energy Harvester Based on Triboelectricity: Large-Scale Energy Nanogenerator

Authors: Aravind Ravichandran, Marc Ramuz, Sylvain Blayac


With the rapid development of wearable electronics and sensor networks, batteries cannot meet the sustainable energy requirement due to their limited lifetime, size and degradation. Ambient energies such as wind have been considered as an attractive energy source due to its copious, ubiquity, and feasibility in nature. With miniaturization leading to high-power and robustness, triboelectric nanogenerator (TENG) have been conceived as a promising technology by harvesting mechanical energy for powering small electronics. TENG integration in large-scale applications is still unexplored considering its attractive properties. In this work, a state of the art design TENG based on wind venturi system is demonstrated for use in any complex environment. When wind introduces into the air gap of the homemade TENG venturi system, a thin flexible polymer repeatedly contacts with and separates from electrodes. This device structure makes the TENG suitable for large scale harvesting without massive volume. Multiple stacking not only amplifies the output power but also enables multi-directional wind utilization. The system converts ambient mechanical energy to electricity with 400V peak voltage by charging of a 1000mF super capacitor super rapidly. Its future implementation in an array of applications aids in environment friendly clean energy production in large scale medium and the proposed design performs with an exhaustive material testing. The relation between the interfacial micro-and nano structures and the electrical performance enhancement is comparatively studied. Nanostructures are more beneficial for the effective contact area, but they are not suitable for the anti-adhesion property due to the smaller restoring force. Considering these issues, the nano-patterning is proposed for further enhancement of the effective contact area. By considering these merits of simple fabrication, outstanding performance, robust characteristic and low-cost technology, we believe that TENG can open up great opportunities not only for powering small electronics, but can contribute to large-scale energy harvesting through engineering design being complementary to solar energy in remote areas.

Keywords: Wind energy, triboelectric nanogenerator, vortex design, large scale energy

Procedia PDF Downloads 75