Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

vector autoregression Related Abstracts

2 Contextual Factors of Innovation for Improving Commercial Banks' Performance in Nigeria

Authors: Tomola Obamuyi


The banking system in Nigeria adopted innovative banking, with the aim of enhancing financial inclusion, and making financial services readily and cheaply available to majority of the people, and to contribute to the efficiency of the financial system. Some of the innovative services include: Automatic Teller Machines (ATMs), National Electronic Fund Transfer (NEFT), Point of Sale (PoS), internet (Web) banking, Mobile Money payment (MMO), Real-Time Gross Settlement (RTGS), agent banking, among others. The introduction of these payment systems is expected to increase bank efficiency and customers' satisfaction, culminating in better performance for the commercial banks. However, opinions differ on the possible effects of the various innovative payment systems on the performance of commercial banks in the country. Thus, this study empirically determines how commercial banks use innovation to gain competitive advantage in the specific context of Nigeria's finance and business. The study also analyses the effects of financial innovation on the performance of commercial banks, when different periods of analysis are considered. The study employed secondary data from 2009 to 2018, the period that witnessed aggressive innovation in the financial sector of the country. The Vector Autoregression (VAR) estimation technique forecasts the relative variance of each random innovation to the variables in the VAR, examine the effect of standard deviation shock to one of the innovations on current and future values of the impulse response and determine the causal relationship between the variables (VAR granger causality test). The study also employed the Multi-Criteria Decision Making (MCDM) to rank the innovations and the performance criteria of Return on Assets (ROA) and Return on Equity (ROE). The entropy method of MCDM was used to determine which of the performance criteria better reflect the contributions of the various innovations in the banking sector. On the other hand, the Range of Values (ROV) method was used to rank the contributions of the seven innovations to performance. The analysis was done based on medium term (five years) and long run (ten years) of innovations in the sector. The impulse response function derived from the VAR system indicated that the response of ROA to the values of cheques transaction, values of NEFT transactions, values of POS transactions was positive and significant in the periods of analysis. The paper also confirmed with entropy and range of value that, in the long run, both the CHEQUE and MMO performed best while NEFT was next in performance. The paper concluded that commercial banks would enhance their performance by continuously improving on the services provided through Cheques, National Electronic Fund Transfer and Point of Sale since these instruments have long run effects on their performance. This will increase the confidence of the populace and encourage more usage/patronage of these services. The banking sector will in turn experience better performance which will improve the economy of the country. Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression,

Keywords: Financial Innovation, multi-criteria decision making, Bank Performance, vector autoregression

Procedia PDF Downloads 1
1 Forecasting Regional Data Using Spatial Vars

Authors: Taisiia Gorshkova


Since the 1980s, spatial correlation models have been used more often to model regional indicators. An increasingly popular method for studying regional indicators is modeling taking into account spatial relationships between objects that are part of the same economic zone. In 2000s the new class of model – spatial vector autoregressions was developed. The main difference between standard and spatial vector autoregressions is that in the spatial VAR (SpVAR), the values of indicators at time t may depend on the values of explanatory variables at the same time t in neighboring regions and on the values of explanatory variables at time t-k in neighboring regions. Thus, VAR is a special case of SpVAR in the absence of spatial lags, and the spatial panel data model is a special case of spatial VAR in the absence of time lags. Two specifications of SpVAR were applied to Russian regional data for 2000-2017. The values of GRP and regional CPI are used as endogenous variables. The lags of GRP, CPI and the unemployment rate were used as explanatory variables. For comparison purposes, the standard VAR without spatial correlation was used as “naïve” model. In the first specification of SpVAR the unemployment rate and the values of depending variables, GRP and CPI, in neighboring regions at the same moment of time t were included in equations for GRP and CPI respectively. To account for the values of indicators in neighboring regions, the adjacency weight matrix is used, in which regions with a common sea or land border are assigned a value of 1, and the rest - 0. In the second specification the values of depending variables in neighboring regions at the moment of time t were replaced by these values in the previous time moment t-1. According to the results obtained, when inflation and GRP of neighbors are added into the model both inflation and GRP are significantly affected by their previous values, and inflation is also positively affected by an increase in unemployment in the previous period and negatively affected by an increase in GRP in the previous period, which corresponds to economic theory. GRP is not affected by either the inflation lag or the unemployment lag. When the model takes into account lagged values of GRP and inflation in neighboring regions, the results of inflation modeling are practically unchanged: all indicators except the unemployment lag are significant at a 5% significance level. For GRP, in turn, GRP lags in neighboring regions also become significant at a 5% significance level. For both spatial and “naïve” VARs the RMSE were calculated. The minimum RMSE are obtained via SpVAR with lagged explanatory variables. Thus, according to the results of the study, it can be concluded that SpVARs can accurately model both the actual values of macro indicators (particularly CPI and GRP) and the general situation in the regions

Keywords: Forecasting, Spatial econometrics, vector autoregression, regional data

Procedia PDF Downloads 1