Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

transmission line Related Abstracts

6 Investigation of Design Process of an Impedance Matching in the Specific Frequency for Radio Frequency Application

Authors: H. Nabaei, M. Joghataie


In this article, we study the design methods of matched filter with commercial software including CST Studio and ADS in specific frequency: 900 MHz. At first, we select two amounts of impedance for studying matching of them. Then, using by matched filter utility tool in ADS software, we simulate and deviate the elements of matched filters. In the following, we implement matched filter in CST STUDIO software. The simulated results show the great conformity in this field. Also, we peruse scattering and Impedance parameters in the Derivative structure. Finally, the layout of matched filter is obtained by the schematic tool of CST STUDIO. In fact, here, we present the design process of matched filters in the specific frequency.

Keywords: impedance matching, lumped element, transmission line, maximum power transmission

Procedia PDF Downloads 377
5 Enhancement of the Performance of Al-Qatraneh 33-kV Transmission Line Using STATCOM: A Case Study

Authors: Saleh Al-Jufout, Ali Hamad, Ibrahim Al-Drous


This paper presents a case study of using STATCOM to enhance the performance of Al-Qatraneh 33-kV transmission line. The location of the STATCOM was identified maintaining minimum voltage drops at the 110 load nodes. The transmission line and the 110 load nodes have been modeled by MATLAB/Simulink. The suggested STATCOM and its location will increase the transmission capability of this transmission line and overcome the overload expected in the year 2020. The annual percentage loading rise has been considered as 14%. A graphical representation of the line voltages and the voltage drops at different load nodes has been illustrated.

Keywords: MATLAB, facts, STATCOM, transmission line, voltage drop

Procedia PDF Downloads 257
4 Effects of Aerodynamic on Suspended Cables Using Non-Linear Finite Element Approach

Authors: Jeremiah Chukwuneke, Justin Nwabanne, Sam Omenyi


This work presents structural nonlinear static analysis of a horizontal taut cable using Finite Element Analysis (FEA) method. The FEA was performed analytically to determine the tensions at each nodal point and subsequently, performed based on finite element displacement method computationally using the FEA software, ANSYS 14.0 to determine their behaviour under the influence of aerodynamic forces imposed on the cable. The convergence procedure is adapted into the method to prevent excessive displacements through the computations. The work compared the two FEA cases by examining the effectiveness of the analytical model in describing the response with few degrees of freedom and the ability of the nonlinear finite element procedure adopted to capture the complex features of cable dynamics with reference to the aerodynamic external influence. Results obtained from this work explain that the analytic FEM results without aerodynamic influence show a parabolic response with an optimum deflection at nodal points 12 and 13 with the cable weight at nodes 12 and 13 having the value -1.002936N while for the cable tension shows an optimum deflection value for nodes 12 and 13 at -189396.97kg/km. The maximum displacement for the cable system was obtained from ANSYS 14.0 as 4483.83 mm for X, Y and Z components of displacements at node number 2 while the maximum displacement obtained is 4218.75mm for all the directional components. The dynamic behaviour of a taut cable investigated has application in a typical power transmission line. Aerodynamic influences on the cables were considered using FEA approach by employing ANSYS 14.0 showed a complex modal behaviour as expected.

Keywords: Aerodynamics, Finite Element Analysis, transmission line, cable tension and weight, nodal, non-linear model, optimum deflection, suspended cable

Procedia PDF Downloads 136
3 Transmission Line Inspection Using Drones

Authors: Jae Kyung Lee, Joon Young Park


Maintenance on power transmission lines requires a lot of works. Sometimes they should be maintained on live-line environment with high altitude. Therefore, there always exist risks of falling from height and electric shock. To decline those risks, drones are recently applying on the electric power industry. This paper presents new operational technology while inspecting power transmission line. This paper also describes a technique for creating a flight path of a drone for transmission line inspection and a technique for controlling the drones of different types. Its technical and economical feasibilities have confirmed through experiments.

Keywords: Control System, Inspection, Drones, transmission line

Procedia PDF Downloads 164
2 Transient Voltage Distribution on the Single Phase Transmission Line under Short Circuit Fault Effect

Authors: A. Kojah, A. Nacaroğlu


Single phase transmission lines are used to transfer data or energy between two users. Transient conditions such as switching operations and short circuit faults cause the generation of the fluctuation on the waveform to be transmitted. Spatial voltage distribution on the single phase transmission line may change owing to the position and duration of the short circuit fault in the system. In this paper, the state space representation of the single phase transmission line for short circuit fault and for various types of terminations is given. Since the transmission line is modeled in time domain using distributed parametric elements, the mathematical representation of the event is given in state space (time domain) differential equation form. It also makes easy to solve the problem because of the time and space dependent characteristics of the voltage variations on the distributed parametrically modeled transmission line.

Keywords: Energy Transmission, single phase, transient voltage, transmission line, transient effects, RLC short circuit

Procedia PDF Downloads 58
1 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables

Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner


High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)

Keywords: transmission line, eigenvalues, random matrix theory, multiple-input multiple-output, quantum graph

Procedia PDF Downloads 22