Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10

torque Related Abstracts

10 Analysis of the Torque Required for Mixing LDPE with Natural Fibre and DCP

Authors: A. E. Delgado, W. Aperador


This study evaluated the incidence of concentrated natural fibre, as well as the effects of adding a crosslinking agent on the torque when those components are mixed with low density polyethylene (LDPE). The natural fibre has a particle size of between 0.8-1.2mm and a moisture content of 0.17%. An internal mixer was used to measure the torque required to mix the polymer with the fibre. The effect of the fibre content and crosslinking agent on the torque was also determined. A change was observed in the morphology of the mixes using SEM differential scanning microscopy.

Keywords: DCP, WPC, LDPE, natural fibre, torque

Procedia PDF Downloads 248
9 Innovative Design of Spherical Robot with Hydraulic Actuator

Authors: Roya Khajepour, Alireza B. Novinzadeh


In this paper, the spherical robot is modeled using the Band-Graph approach. This breed of robots is typically employed in expedition missions to unknown territories. Its motion mechanism is based on convection of a fluid in a set of three donut vessels, arranged orthogonally in space. This robot is a non-linear, non-holonomic system. This paper utilizes the Band-Graph technique to derive the torque generation mechanism in a spherical robot. Eventually, this paper describes the motion of a sphere due to the exerted torque components.

Keywords: Modeling, torque, spherical robot, Band-Graph

Procedia PDF Downloads 163
8 The Effect of AMBs Number of a Dynamics Behavior of a Spur Gear Reducer in Non-Stationary Regime

Authors: Najib Belhadj Messaoud, Slim Souissi


The non-linear dynamic behavior of a single stage spur gear reducer is studied in this paper in transient regime. Driving and driver rotors are, respectively, powered by a motor torque Cm and loaded by a resistive torque Cr. They are supported by two identical Active Magnetic Bearings (AMBs). Gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiff-ness due to the variation of input rotational speed. Three models of AMBs were used with four, six and eight magnets. They are operated by P.D controller and powered by control and bias currents. The dynamic parameters of the AMBs are modeled by stiffness and damping matrices computed by the derivation of the electromagnetic forces. The equations of motion are solved iteratively using Newmark time integration method. In the first part of the study, the model is powered by an electric motor and by a four strokes four cylinders diesel engine in the second part. The numerical results of the dynamic responses of the system come to confirm the significant effect of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition. Results also confirm the influence of the magnet number by AMBs on the dynamic behavior of the system. Indeed, vibrations were more important in the case of gear reducer supported by AMBs with four magnets.

Keywords: Gear, Stiffness, torque, fluctuation, motor, acyclism

Procedia PDF Downloads 347
7 Tuning for a Small Engine with a Supercharger

Authors: Shinji Kajiwara, Tadamasa Fukuoka


The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.

Keywords: Combustion, Power, Numerical Simulation, Engine, torque, cooling system, mechanical super charger

Procedia PDF Downloads 154
6 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis

Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay


Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.

Keywords: Mechanical Power, torque, Savonius rotor, wind car

Procedia PDF Downloads 153
5 Compilation of Load Spectrum of Loader Drive Axle

Authors: Wei Yongxiang, Zhu Haoyue, Tang Heng, Yuan Qunwei


In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.

Keywords: extrapolation, torque, axle, load spectrum, rain-flow counting method

Procedia PDF Downloads 138
4 Concentrated Winding Permanent Magnet Axial Flux Motor with Soft Magnetic Composite Core

Authors: N. Aliyu, G. Atkinson, N. Stannard


Compacted insulated iron powder is a key material in high volume electric motors manufacturing. It offers high production rates, dimensionally stable components, and low scrap volumes. It is the aim of this paper to develop a three-phase compact single sided concentrated winding axial flux PM motor with soft magnetic composite (SMC) core for reducing core losses and cost. To succeed the motor would need to be designed in such a way as to exploit the isotropic magnetic properties of the material and open slot constructions with surface mounted PM for higher speed up to 6000 rpm, without excessive rotor losses. Higher fill factor up to 70% was achieved by compacting the coils, which offered a significant improvement in performance. A finite-element analysis was performed for accurate parameters calculation and the simulation results are thoroughly presented and agree with the theoretical calculations very well.

Keywords: torque, high efficiency, SMC core, axial gap motor

Procedia PDF Downloads 187
3 Comparison between Torsional Ultrasonic Assisted Drilling and Conventional Drilling of Bone: An in vitro Study

Authors: Nikoo Soleimani


Background: Reducing torque during bone drilling is one of the effective factors in reaching to an optimal drilling process. Methods: 15 bovine femurs were drilled in vitro with a drill bit with a diameter of 4 mm using two methods of torsional ultrasonic assisted drilling (T-UAD) and convent conventional drilling (CD) and the effects of changing the feed rate and rotational speed on the torque were compared in both methods. Results: There was no significant difference in the thrust force measured in both methods due to the direction of vibrations. Results showed that using T-UAD method for bone drilling at feed rates of 0.16, 0.24 and 0.32 mm/rev led for all rotational speeds to a decrease of at least 16.3% in torque compared to the CD method. Further, using T-UAD at rotational speeds of 355~1000 rpm with various feed rates resulted in a torque reduction of 16.3~50.5% compared to CD method. Conclusions: Reducing the feed rate and increasing the rotational speed, except for the rotational speed of 500 rpm and a feed rate of 0.32 mm/rev, resulted generally in torque reduction in both methods. However, T-UAD is a more effective and desirable option for bone drilling considering its significant torque reduction.

Keywords: rotational speed, torque, feed rate, bone drilling, torsional ultrasonic assisted drilling

Procedia PDF Downloads 22
2 Transmission Design That Eliminates Gradual System Problems in Gearboxes

Authors: Ömer Ateş, Atilla Savaş


Reducers and transmission systems are power and speed transfer tools that have been used for many years in the technology world and in all engineering fields. Since today's transmissions have a threaded tap system, torque interruption occurs during tap change. besides, breakdown and manufacturing costs are high. Another problem is the limited torque and rpm setting in stepped gearbox systems. In this study, a new type of transmission system is designed to solve these problems. This new type of transmission system has been called the Continuously Variable Pulley. The most important feature of the transmission system in the study is that it can be adjusted Revolutions Per Minute-wise and torque-wise at the millimeter (precision) adjustment level. In order to make adjustments at this level, an adjustable pulley with the help of hydraulic piston is designed. The efficiency of the designed transmission system is 97 percent, the efficiency of today's transmissions is in the range of 85-95 percent. examined at the analysis and calculations, it is seen that the designed system gives realistic results and can be compared with today's transmissions and reducers. Therefore, this new type of transmission has been proven to be usable in production areas and the world of technology.

Keywords: Transmission, gearbox, torque, reducer

Procedia PDF Downloads 1
1 Effect of Sedimentation on Torque Transmission in the Larger Radius Magnetorheological Clutch

Authors: Manish Kumar Thakur, Chiranjit Sarkar


Sedimentation of magnetorheological (MR) fluid affects its working. MR fluid is a smart fluid that has unique qualities such as quick responsiveness and easy controllability. It is used in the MR damper, MR brake, and MR clutch. In this work effect of sedimentation on torque transmission in the shear mode operated MR clutch is investigated. A test rig is developed to test the impact of sedimentation on torque transmission in the MR clutch. Torque transmission capability of MR clutch has been measured under two conditions to confirm the result of sedimentation. The first experiment is done just after filling and the other after one week. It has been observed that transmission torque is decreased after sedimentation. Hence sedimentation affects the working of the MR clutch.

Keywords: Sedimentation, torque, clutch, magnetorheological fluid

Procedia PDF Downloads 1