Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Thermodynamic Properties Related Abstracts

4 Theoretical Method for Full Ab-Initio Calculation of Rhenium Carbide Compound

Authors: D.Rached, M.Rabah


First principles calculations are carried out to investigate the structural, electronic, and elastic properties of the utraincompressible materials, namely, noble metal carbide of Rhenium carbide (ReC) in four phases, the rocksalt (NaCl-B1), zinc blende (ZB-B2), the tungsten carbide(Bh) (WC), and the nickel arsenide (NiAs-B8).The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus its pressure derivate, and the hardness of ReC in these phases are systematically predicted by calculations from first–principles. The corresponding calculated bulk modulus is comparable with that of diamond, especially for the B8 –type rhenium carbide (ReC), the incompressibility along the c axis is demonstrated to exceed the linear incompressibility of diamond. Our calculations confirm in the nickel arsenide (B8) structure the ReC is found to be stable with a large bulk modulus B=440 GPa and the tungsten carbide (WC) structure becomes the most more favourable with to respect B3 and B1 structures, which ReC- WC is meta-stable. Furthermore, the highest bulk modulus values in the zinc blende (B3), rock salt (B1), tungsten carbide (WC), and the nickel arsenide (B8) structures (294GPa, 401GPa, 415GPa and 447 GPa, respectively) indicates that ReC is a hard material, and is superhard compound H(B8)= 36 GPa compared with the H(diamond)=96 GPa and H(c BN)=63.10 GPa.

Keywords: Elasticity, dft, Thermodynamic Properties, Mechanical Properties, high pressure, FP-LMTO, hard material

Procedia PDF Downloads 313
3 Structural and Thermodynamic Properties of MnNi

Authors: N. Benkhettoua, Y. Barkata


We present first-principles studies of structural and thermodynamic properties of MnNi According to the calculated total energies, by using an all-electron full-potential linear muffin–tin orbital method (FP-LMTO) within LDA and the quasi-harmonic Debye model implemented in the Gibbs program is used for the temperature effect on structural and calorific properties.

Keywords: Magnetic Materials, Thermodynamic Properties, structural properties, metallurgical and materials engineering

Procedia PDF Downloads 404
2 Molecular Dynamics Simulations of the Structural, Elastic, and Thermodynamic Properties of Cubic AlBi

Authors: Y. Benallou, K. Amara, M. Zemouli, M. Elkeurti


We present a theoretical study of the structural, elastic and thermodynamic properties of the zinc-blende AlBi for a wide temperature range. The simulation calculation is performed in the framework of the molecular dynamics method using the three-body Tersoff potential which reproduces provide, with reasonable accuracy, the lattice constants and elastic constants. Our results for the lattice constant, the bulk modulus and cohesive energy are in good agreement with other theoretical available works. Other thermodynamic properties such as the specific heat and the lattice thermal expansion can also be predicted. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: Molecular Dynamics Simulations, Thermodynamic Properties, aluminium compounds, interatomic potential, structural phase transition

Procedia PDF Downloads 167
1 The Relationship Study between Topological Indices in Contrast with Thermodynamic Properties of Amino Acids

Authors: Esmat Mohammadinasab, Mostafa Sadeghi


In this study are computed some thermodynamic properties such as entropy and specific heat capacity, enthalpy, entropy and gibbs free energy in 10 type different Aminoacids using Gaussian software with DFT method and 6-311G basis set. Then some topological indices such as Wiener, shultz are calculated for mentioned molecules. Finaly is showed relationship between thermodynamic peoperties and above topological indices and with different curves is represented that there is a good correlation between some of the quantum properties with topological indices of them. The instructive example is directed to the design of the structure-property model for predicting the thermodynamic properties of the amino acids which are discussed here.

Keywords: Amino Acids, Thermodynamic Properties, DFT method, molecular descriptor

Procedia PDF Downloads 278