Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

student outcomes Related Abstracts

3 An Expert System for Assessment of Learning Outcomes for ABET Accreditation

Authors: M. H. Imam, Imran A. Tasadduq, Abdul-Rahim Ahmad, Fahd M. Aldosari

Abstract:

Learning outcomes of a course (CLOs) and the abilities at the time of graduation referred to as Student Outcomes (SOs) are required to be assessed for ABET accreditation. A question in an assessment must target a CLO as well as an SO and must represent a required level of competence. This paper presents the idea of an Expert System (ES) to select a proper question to satisfy ABET accreditation requirements. For ES implementation, seven attributes of a question are considered including the learning outcomes and Bloom’s Taxonomy level. A database contains all the data about a course including course content topics, course learning outcomes and the CLO-SO relationship matrix. The knowledge base of the presented ES contains a pool of questions each with tags of the specified attributes. Questions and the attributes represent expert opinions. With implicit rule base the inference engine finds the best possible question satisfying the required attributes. It is shown that the novel idea of such an ES can be implemented and applied to a course with success. An application example is presented to demonstrate the working of the proposed ES.

Keywords: Expert System, student outcomes, course learning outcomes, question attributes

Procedia PDF Downloads 117
2 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: Machine Learning, Text Mining, Accreditation, ABET, student outcomes, benchmark collection, program educational objectives, supervised multi-class classification

Procedia PDF Downloads 36
1 Community and School Partnerships: Raising Student Outcomes through Shared Goals and Values Using Integrated Learning as a Change Model

Authors: Sheila Santharamohana, Susan Bennett

Abstract:

Historically, the attrition rates in secondary schools of Indigenous people or Orang Asli of Malaysia have been a cause for nationwide concern. Efforts to increase student engagement focusing on curriculum re-design and aid have not had the targeted impact. The scope of the research explored a change model incorporating project-based learning and wrap-around support through school-community partnerships to increase Orang Asli engagement, student outcomes and improve cultural connectedness. The evaluation methodology was mixed-method comprising a student questionnaire, interviews, and document analysis. Data and evidence were gathered from school staff, community, the Orang Asli governmental authority (JAKOA) and external agencies. Findings from the year-long research suggests shared values and goals in school-community partnerships foster responsive leadership and is key to safeguarding vulnerable Orang Asli, resulting in improved student outcomes. The research highlighted the barriers to the recognition and distinct needs and unique values of the Orang Asli that impact their educational equity and outcomes.

Keywords: Indigenous Education, student outcomes, Cultural Connectedness, School-Community Partnership

Procedia PDF Downloads 1