Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30

Staphylococcus aureus Related Abstracts

30 Adhesion of Staphylococcus epidermidis and Staphylococcus aureus to Intravascular cannulae

Authors: Ghadah Abusalim, Suliman Alharbi, Hesham Khalil, Milton Wainwright, Mohammad A. Khiyami


The use of implantable foreign devices in medicine has recently increased dramatically. Intravascular cannulae and catheters are used to administer fluids, medications, parenteral nutrition, and blood products in order to monitor hemodynamic status and also to provide hemodialysis. The early and late failure of inserted or implanted devices is largely the result of bacterial infection and may lead to the disruption of integration between the device and the tissues which surround it. Staphylococcus aureus and Staphylococcus epidermidis are widely considered to be the most common organisms causing device-related infection. Our study showed that S. aureus and S. epidermidis adhered to intravascular cannulae made up of PTFE, SPTFE and vialon. Adhesion of S. epidermidis and S. aureus to intravascular cannulae varied significantly depending upon the type of material used and the presence of coating materials. Both bacteria adhered less to PTFE followed by Vialon and SPTFE and the adhesion capacity of S. aureus and S. epidermidis increased over time. Coating intravascular cannulae with human serum albumin inhibited the adhesion of S. aureus and S. epidermidis to these cannulae, and pretreatment of cannulae with fibronectin inhibited the adhesion of S. epidermidis but increased the adhesion of S. aureus to all types of cannulae. Pretreatment of cannulae surface with potassium chloride or calcium chloride increased the adhesion of S. aureus and S. epidermidis to cannulae, suggesting a role for electrostatic forces in the mechanism of such adhesion. This study will hopefully clarify the mechanism of adhesion and provide possible means of preventing such adhesion either by the use of better material coatings or by interfering with the process of adhesion by targeting bacterial structures responsible for it. Currently we recommend the use of PTFE cannulae as they exhibit a lower bacterial adhesion capacity compared to the other tested cannulae.

Keywords: Adhesion, Staphylococcus epidermidis, Staphylococcus aureus, cannulae, PTFE, Vialon

Procedia PDF Downloads 134
29 Sensitivity of Staphylococcus aureus Isolated from Subclinical Bovine Mastitis to Ciprofloxacin in Dairy Herd in Tabriz during 2013

Authors: Alireza Jafarzadeh, Samad Mosaferi, Mansour Khakpour


Mastitis is an inflammation of the parenchyma of mammary gland regardless of the causes. Mastitis is characterized by a range of physical and chemical changes in the glandular tissue. The most important change in milk includes discoloration, the presence of clots and large number of leucocytes. There is swelling, heat, pain and edema in mammary gland in many clinical cases. Positive coagulase S. aureus is a major pathogen of the bovine mammary gland and a common cause of contagious mastitis in cattle. The aim of this study was to evaluate the outbreaks of Staphylococcus aureus mastitis. This study is conducted in ten dairy herds about one thousand cows. After doing CMT and identifying infected cows, the milk samples obtained from infected teats and transported to microbiological laboratories. After microbial culture of milk samples and isolating S. aureus, antimicrobial, sensitivity test was performed with disk diffusion method by ciprofloxacin, co-amoxiclav, erythromycin, penicillin, oxytetracyclin, sulfonamides, lincomycin and cefquinome. The study defined that the outbreak of subclinical positive coagulase Staphylococcus mastitis in dairy herd was 13.11% (5.6% S. aureus and 7.51% S. intermedicus). The antimicrobial sensitivity test shown that 87.23% of Staphylococcus aureus isolated from bovine mastitis in dairy herd was susceptible to ciprofloxacin, 93.9% to cefquinome, 4.67% to co-amoxiclav, 12.16% to erythromycin 86.11% to sulfonamides (co-trimoxazole), 3.35% lincomycin, 12.7% to oxytetracyclin and 5.98% to penicillin. Results of present defined that ciprofloxacin has a great effect on Staphylococcus aureus isolated from subclinical bovine mastitis dairy herd. It seems that cefquinome sulfonamides has a great effect on isolated Staphylococcus aureus in vivo.

Keywords: Mastitis, Staphylococcus aureus, ciprofloxacin, dairy herd

Procedia PDF Downloads 483
28 Isolation of Antimicrobial Compounds from Marine Sponge Neopetrosia exigua

Authors: Haitham Qaralleh, Syed Z. Idid, Shahbudin Saad, Deny Susanti, Osama Althunibat


This study was carried out to isolate the active antimicrobial compounds from Neopetrosia exigua using bio-guided assay isolation against Staphylococcus aureus. N. exigua was extracted using methanol and subjected to liquid-liquid extraction using solvents with different polarity (n-hexane, carbon tetrachloride, dichloromethane, n-butanol and water). Purification of the active components of n-butanol and dichloromethane fractions was done using Sephadex LH-20 and reverse phase chromatography. Based on the biological guided fractionation results, dichloromethane and n-butanol fractions showed the highest antimicrobial activity. Purification of the active components of n-butanol and dichloromethane fractions yielded three compounds. The structure of the isolated compounds were elucidated and found to be 5-hydroxy-1H-indole-3-carboxylic acid methyl ester, cyclo-1`-demethylcystalgerone and avarol derivative. Avarol was showed potent bactericidal effect against S. aureus. N. exigua appears to be rich source of natural antimicrobial agents. Further studies are needed to investigate the mode of action of these compounds.

Keywords: Antimicrobial, Staphylococcus aureus, avarol, Neopetrosia exigua

Procedia PDF Downloads 302
27 Physiochemical and Antibacterial Assessment of Iranian Propolis Gathering in Qazvin Province

Authors: Nematollah Gheibi, Nader Divan Khosroshahi, Mahdi Mohammadi Ghanbarlou


Introduction: Nowadays, the phenomenon of bacterial resistance is one of the most important challenge of the health community in the world. Propolis is most important production of bee colonies that collected from of various plants. So far, a lot of investigations carried out about its antibacterial effects. Material and methods: Thirty gram of propolis prepared as ethanolic extract and after different process of purification, 7.5 gr of its pure form were obtained. Propolis compounds identification was performed by TLC and VLC methods. The HPLC spectrum obtaining from propolis ethanolic extract was compared with some purified standard phenolic and flavonoid substances. Antibacterial effects of ethanol extract of purified propolis were evaluated on two strains of Staphylococcus aureus and Pseudomonas aeruginosa and their MIC was determined by the microdillution assay. Results: Ethanolic propolis extraction analyzed by TLC were resulted to confirm several phenolic and flavonoid compounds in this extract and some of the confirmed by HPLC technique. Minimum inhibitory concentration (MIC) for standard Staphylococcus aureus (ATCC25923) and Pseudomonas aeruginosa (ATCC27853) strains were obtained 2.5 mg/ml and 50 mg/ml respectively. Conclusion: Bee Propolis is a mix organic compound that has a lot of beneficial effects such as anti-bacterial that emphasized in this investigation. It is proposed as a rich source of natural phenolic and flavonoids compounds in designing of new biological resources for hygienic and medical applications.

Keywords: Antibacterial, propolis, Staphylococcus aureus, Pseudomonas aeruginosa

Procedia PDF Downloads 162
26 SPR Immunosensor for the Detection of Staphylococcus aureus

Authors: Muhammad Ali Syed, Arshad Saleem Bhatti, Chen-zhong Li, Habib Ali Bokhari


Surface plasmon resonance (SPR) biosensors have emerged as a promising technique for bioanalysis as well as microbial detection and identification. Real time, sensitive, cost effective, and label free detection of biomolecules from complex samples is required for early and accurate diagnosis of infectious diseases. Like many other types of optical techniques, SPR biosensors may also be successfully utilized for microbial detection for accurate, point of care, and rapid results. In the present study, we have utilized a commercially available automated SPR biosensor of BI company to study the microbial detection form water samples spiked with different concentration of Staphylococcus aureus bacterial cells. The gold thin film sensor surface was functionalized to react with proteins such as protein G, which was used for directed immobilization of monoclonal antibodies against Staphylococcus aureus. The results of our work reveal that this immunosensor can be used to detect very small number of bacterial cells with higher sensitivity and specificity. In our case 10^3 cells/ml of water have been successfully detected. Therefore, it may be concluded that this technique has a strong potential to be used in microbial detection and identification.

Keywords: Biosensors, Staphylococcus aureus, surface plasmon resonance (SPR), microbial detection

Procedia PDF Downloads 353
25 Antibacterial Activity of Northern Algerian Honey

Authors: Messaouda Belaid, Salima Kebbouche-Gana, Djamila Benaziza


Our study focuses on determining the antibacterial activity of some honeys from northern Algeria. To test this activity, the agar well diffusion methods was employed. The bacterial strains tested were Staphylococcus aureus, Bacillus subtilis, Streptococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeroginosae. The results showed that all the microbes tested were inhibited by all honey used in this study but Those bacteria that appear to be more sensitive to all honey tested are Staphylococcus aureus and Pseudomonas aeroginosae.

Keywords: honey, antibacterial activity, Staphylococcus aureus, Northern Algeria

Procedia PDF Downloads 219
24 Papain Immobilized Polyurethane Film as an Antimicrobial Food Package

Authors: M. Cynthya, V. Prabhawathi, D. Mukesh


Food contamination occurs during post process handling. This leads to spoilage and growth of pathogenic microorganisms in the food, thereby reducing its shelf life or spreading of food borne diseases. Several methods are tried and one of which is use of antimicrobial packaging. Here, papain, a protease enzyme, is covalently immobilized with the help of glutarldehyde on polyurethane and used as a food wrap to protect food from microbial contamination. Covalent immobilization of papain was achieved at a pH of 7.4; temperature of 4°C; glutaraldehyde concentration of 0.5%; incubation time of 24 h; and 50 mg of papain. The formation of -C=N- observed in the Fourier transform infrared spectrum confirmed the immobilization of the enzyme on the polymer. Immobilized enzyme retained higher activity than the native free enzyme. The efficacy of this was studied by wrapping it over S. aureus contaminated cottage cheese (paneer) and cheese and stored at a temperature of 4°C for 7 days. The modified film reduced the bacterial contamination by eight folds when compared to the bare film. FTIR also indicates reduction in lipids, sugars and proteins in the biofilm.

Keywords: cheese, Staphylococcus aureus, papain, polyurethane

Procedia PDF Downloads 313
23 Investigation of Enterotoxigenic Staphylococcus aureus in Kitchen of Catering

Authors: Çiğdem Sezer, Aksem Aksoy, Leyla Vatansever


This study has been done for the purpose of evaluation of public health and identifying of enterotoxigenic Staphyloccocus aureus in kitchen of catering. In the kitchen of catering, samples have been taken by swabs from surface of equipments which are in the salad section, meat section and bakery section. Samples have been investigated with classical cultural methods in terms of Staphyloccocus aureus. Therefore, as a 10x10 cm area was identified (salad, cutting and chopping surfaces, knives, meat grinder, meat chopping surface) samples have been taken with sterile swabs with helping FTS from this area. In total, 50 samples were obtained. In aseptic conditions, Baird-Parker agar (with egg yolk tellurite) surface was seeded with swabs. After 24-48 hours of incubation at 37°C, the black colonies with 1-1.5 mm diameter and which are surrounded by a zone indicating lecithinase activity were identified as S. aureus after applying Gram staining, catalase, coagulase, glucose and mannitol fermentation and termonuclease tests. Genotypic characterization (Staphylococcus genus and S.aureus species spesific) of isolates was performed by PCR. The ELISA test was applied to the isolates for the identification of staphylococcal enterotoxins (SET) A, B, C, D, E in bacterial cultures. Measurements were taken at 450 nm in an ELISA reader using an Ridascreen-Total set ELISA test kit (r-biopharm R4105-Enterotoxin A, B, C, D, E). The results were calculated according to the manufacturer’s instructions. A total of 50 samples of 97 S. aureus was isolated. This number has been identified as 60 with PCR analysis. According to ELISA test, only 1 of 60 isolates were found to be enterotoxigenic. Enterotoxigenic strains were identified from the surface of salad chopping and cutting. In the kitchen of catering, S. aureus identification indicates a significant source of contamination. Especially, in raw consumed salad preparation phase of contamination is very important. This food can be a potential source of food-borne poisoning their terms, and they pose a significant risk to consumers have been identified.

Keywords: Health, Staphylococcus aureus, enterotoxin, catering, kitchen

Procedia PDF Downloads 267
22 Anti-Microbial Activity of Ag-N Co-Doped ZnS and ZnS-Fe2O3 Composite Nanoparticles

Authors: O. P. Yadav


Ag-N co-doped ZnS and ZnS/Fe2O3 composite nanoparticles have been synthesized by chemical and sol-gel methods. As-synthesized nanomaterial have been characterized by XRD and TEM techniques and their antimicrobial effects were studied using paper disc diffusion technique against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. As-synthesized nanomaterial showed potent antimicrobial activity against studied bacterial strains. Antimicrobial activity of synthesized nanomaterial has also been compared with some commonly used antibiotics.

Keywords: Nanomaterial, Antibiotic, Staphylococcus aureus, TEM, Escherichia coli

Procedia PDF Downloads 214
21 In-silico Antimicrobial Activity of Bioactive Compounds of Ricinus communis against DNA Gyrase of Staphylococcus aureus as Molecular Target

Authors: S. Rajeswari


Medicinal Plant extracts and their bioactive compounds have been used for antimicrobial activities and have significant remedial properties. In the recent years, a wide range of investigations have been carried out throughout the world to confirm antimicrobial properties of different medicinally important plants. A number of plants showed efficient antimicrobial activities, which were comparable to that of synthetic standard drugs or antimicrobial agents. The large family Euphorbiaceae contains nearly about 300 genera and 7,500 speciesand one among is Ricinus communis or castor plant which has high traditional and medicinal value for disease free healthy life. Traditionally the plant is used as laxative, purgative, fertilizer and fungicide etc. whereas the plant possess beneficial effects such as anti-oxidant, antihistamine, antinociceptive, antiasthmatic, antiulcer, immunomodulatory anti diabetic, hepatoprotective, anti inflammatory, antimicrobial, and many other medicinal properties. This activity of the plant possess due to the important phytochemical constituents like flavonoids, saponins, glycosides, alkaloids and steroids. The presents study includes the phytochemical properties of Ricinus communis and to prediction of the anti-microbial activity of Ricinus communis using DNA gyrase of Staphylococcus aureus as molecular target. Docking results of varies chemicals compounds of Ricinus communis against DNA gyrase of Staphylococcus aureus by maestro 9.8 of Schrodinger show that the phytochemicals are effective against the target protein DNA gyrase. our studies suggest that the phytochemical from Ricinus communis such has INDICAN (G.Score 4.98) and SUPLOPIN-2(G.Score 5.74) can be used as lead molecule against Staphylococcus infections.

Keywords: Antimicrobial activity, Staphylococcus aureus, Ricinus communis, euphorbiaceae

Procedia PDF Downloads 360
20 Exploratory Characterization of Antibacterial Efficacy of Synthesized Nanoparticles on Staphylococcus Isolates from Hospital Specimens in Saudi Arabia

Authors: Reham K. Sebaih, Afaf I. Shehata , Awatif A. Hindi, Tarek Gheith, Amal A. Hazzani Anas Al-Orjan


Staphylococci spp are ubiquitous gram-positive bacteria is often associated with infections, especially nosocomial infections, and antibiotic resistanceStudy pathogenic bacteria and its use as a tool in the technology of Nano biology and molecular genetics research of the latest research trends of modern characterization and definition of different multiresistant of bacteria including Staphylococci. The Staphylococci are widespread all over the world and particularly in Saudi Arabia The present work study was conducted to evaluate the effect of five different types of nanoparticles (biosynthesized zinc oxide, Spherical and rod of each silver and gold nanoparticles) and their antibacterial impact on the Staphylococcus species. Ninety-six isolates of Staphylococcus species. Staphylococcus aureus, Staphylococcus epidermidis, MRSA were collected from different sources during the period between March 2011G to June 2011G. All isolates were isolated from inpatients and outpatients departments at Royal Commission Hospital in Yanbu Industrial, Saudi Arabia. High percentage isolation from males(55%) than females (45%). Staphylococcus epidermidis from males was (47%), (28%), and(25%). For Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA. Isolates from females were Staphylococcus aureus with higher percent of (47%), (30%), and (23%) for MRSA, Staphylococcus epidermidis. Staphylococcus aureus from wound swab were the highest percent (51.42%) followed by vaginal swab (25.71%). Staphylococcus epidermidis were founded with higher percentage in blood (37.14%) and wound swab (34.21%) respectively related to other. The highest percentage of methicillin-resistant Staphylococcus aureus (MRSA)(80.77%) were isolated from wound swab, while those from nostrils were (19.23%). Staphylococcus species were isolates in highest percentage from hospital Emergency department with Staphylococcus aureus (59.37%), Methicillin-resistant Staphylococcus aureus (MRSA) (28.13%)and Staphylococcus epidermidis (12.5%) respectively. Evaluate the antibacterial property of Zinc oxide, Silver, and Gold nanoparticles as an alternative to conventional antibacterial agents Staphylococci isolates from hospital sources we screened them. Gold and Silver rods Nanoparticles to be sensitive to all isolates of Staphylococcus species. Zinc oxide Nanoparticles gave sensitivity impact range(52%) and (48%). The Gold and Silver spherical nanoparticles did not showed any effect on Staphylococci species. Zinc Oxide Nanoparticles gave bactericidal impact (25%) and bacteriostatic impact (75%) for of Staphylococci species. Detecting the association of nanoparticles with Staphylococci isolates imaging by scanning electron microscope (SEM) of some bacteriostatic isolates for Zinc Oxide nanoparticles on Staphylococcus aureus, Staphylococcus epidermidis and Methicillin resistant Staphylococcus aureus(MRSA), showed some Overlapping Bacterial cells with lower their number and appearing some appendages with deformities in external shape. Molecular analysis was applied by Multiplex polymerase chain reaction (PCR) used for the identification of genes within Staphylococcal pathogens. A multiplex polymerase chain reaction (PCR) method has been developed using six primer pairs to detect different genes using 50bp and 100bp DNA ladder marker. The range of Molecular gene typing ranging between 93 bp to 326 bp for Staphylococcus aureus and Methicillin resistant Staphylococcus aureus by TSST-1,mecA,femA and eta, while the bands border were from 546 bp to 682 bp for Staphylococcus epidermidis using icaAB and atlE. Sixteen isolation of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the femA gene at 132bp,this allowed the using of this gene as an internal positive control, fifteen isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for mecA gene at163bp.This gene was responsible for antibiotic resistant Methicillin, Two isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the TSST-1 gene at326bp which is responsible for toxic shock syndrome in some Staphylococcus species, None were positive for eta gene at 102bpto that was responsible for Exfoliative toxins. Six isolates of Staphylococcus epidermidis were positive for atlE gene at 682 bp which is responsible for the initial adherence, three isolates of Staphylococcus epidermidis were positive for icaAB gene at 546bp that are responsible for mediates the formation of the biofilm. In conclusion, this study demonstrates the ability of the detection of the genes to discriminate between infecting Staphylococcus strains and considered biological tests, they may potentiate the clinical criteria used for the diagnosis of septicemia or catheter-related infections.

Keywords: Nosocomial Infections, Staphylococcus aureus, multiplex polymerase chain reaction, toxic shock syndrome

Procedia PDF Downloads 242
19 Antimicrobial Activity of Different Essential Oils in Synergy with Amoxicillin against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus

Authors: Naheed Niaz, Nimra Naeem, Bushra Uzair, Riffat Tahira


Antibacterial activity of different traditional plants essential oils against clinical isolates of Methicillin-resistant Staphylococcus aureus (MRSA) through disk diffusion method was evaluated. All the tested essential oils, in different concentrations, inhibited growth of S. aureus to varying degrees. Cinnamon and Thyme essential oils were observed to be the “best” against test pathogen. Even at lowest concentration of these essential oils i.e. 25 µl/ml, clear zone of inhibition was recorded 9+0.085mm and 8+0.051mm respectively, and at higher concentrations there was a total reduction in growth of MRSA. The study also focused on analyzing the synergistic effects of essential oils in combination with amoxicillin. Results showed that oregano and pennyroyal mint essential oils which were not very effective alone turned out to be strong synergistic enhancers. The activity increased with increase in concentration of the essential oils. It may be concluded from present results that cinnamon and thyme essential oils could be used as potential antimicrobial source for the treatment of infections caused by Methicillin-resistant Staphylococcus aureus (MRSA).

Keywords: Antibiotics, essential oils, Staphylococcus aureus, combination therapy, minimum inhibitory concentration

Procedia PDF Downloads 279
18 Effect of Cuminum Cyminum L. Essential Oil on Staphylococcus Aureus during the Manufacture, Ripening and Storage of White Brined Cheese

Authors: Ali Misaghi, Afshin Akhondzadeh Basti, Ehsan Sadeghi


Staphylococcus aureus is a pathogen of major concern for clinical infection and food borne illness. Humans and most domesticated animals harbor S. aureus, and so we may expect staphylococci to be present in food products of animal origin or in those handled directly by humans, unless heat processing is applied to destroy them. Cuminum cyminum L. has been allocated the topic of some recent studies in addition to its well-documented traditional usage for treatment of toothache, dyspepsia, diarrhea, epilepsy and jaundice. The air-dried seed of the plant was completely immersed in water and subjected to hydro distillation for 3 h, using a clevenger-type apparatus. In this study, the effect of Cuminum cyminum L. essential oil (EO) on growth of Staphylococcus aureus in white brined cheese was evaluated. The experiment included different levels of EO (0, 7.5, 15 and 30 mL/ 100 mL milk) to assess their effects on S. aureus count during the manufacture, ripening and storage of Iranian white brined cheese for up to 75 days. The significant (P < 0.05) inhibitory effects of EO (even at its lowest concentration) on this organism were observed. The significant (P < 0.05) inhibitory effect of the EO on S. aureus shown in this study may improve the scope of the EO function in the food industry.

Keywords: Staphylococcus aureus, cuminum cyminum L. essential oil, white brined cheese

Procedia PDF Downloads 223
17 Emergence of Vancomycin Resistant and Methcillin Resistant Staphylococus aureus in Patients with Different Clinical Manifestations in Khartoum State, Sudan

Authors: Maimona A. E. Elimam, Suhair Rehan, Miskelyemen A. Elmekki, Mogahid M. Elhassan


Staphylococcus aureus (Staph. aureus), a major cause of potentially life-threatening infections acquired in healthcare and community settings, has developed resistance to most classes of antimicrobial agents as determined by the dramatic increase. The present study aimed to determine the prevalence of MRSA, and VRSA in patients with different clinical manifestations in Khartoum state. The study population (n, 426) were males and females with different age categories, suffering either from wound infections (105), ear infections (121), or UTI (101), in addition to nasal carriers of medical staff (100). Cultures, Gram staining, and other biochemical tests were performed for conventional identification. Modified Kirby-Bauer disk diffusion method was applied and DNA was extracted from MRSA and VRSA isolates and PCR was then performed for amplification of arc, mecA, VanA, and VanB genes. The results confirmed the existence of Staph. aureus in 49/426 (11.5%) cases among which MRSA were isolated from 34/49 (69.4%) when modified Kirby-Bauer disk diffusion method was applied. Ten out of these 34 MRSA were confirmed as VRSA by cultures on BHI agar containing 6μg/ml vancomycin according to NCCLS criteria. PCR revealed that out of the 34 MRSA isolates, 26 were mecA positive (76.5%) while 8 (23.5%) were arcC positive. No vanA or VanB genes were detected. Molecular method confirmed the results for MRSA through the presence of either arcC or mecA genes while it failed to approve the occurrence of VRSA since neither VanA or VanB genes were detected. Thus, VRSA may be attributed to other factors.

Keywords: Antibiotic Resistance, Staphylococcus aureus, MRSA, sudan, VRSA, Khartoum

Procedia PDF Downloads 309
16 Microbial Quality of Raw Camel Milk Produced in South of Morocco

Authors: Maha Alaoui Ismaili, Bouchta Saidi, Mohamed Zahar, Abed Hamama


Thirty one samples of raw camel milk obtained from the region of Laâyoune (South of Morocco) were examined for their microbial quality and presence of some pathogenic bacteria (Staphylococcus aureus and Salmonella sp.). pH of the samples ranged from 6.31 to 6.64 and their titratable acidity had a mean value of 18.56 °Dornic. Data obtained showed a strong microbial contamination with an average total aerobic flora of 1.76 108 ufc ml-1 and a very high fecal counts: 1.82 107 ; 3.25 106 and 3.75 106 in average for total coliforms, fecal coliforms and enterococci respectively. Yeasts and moulds were also found at average respective levels of 3.13 106 and 1.60 105 Salmonella sp. and S. aureus was detected respectively in 13% and 30% of the milk samples. These results indicate clearly the lack of hygienic conditions of camel milk production and storage in this region. Lactic acid bacteria were found at the following average numbers: 4.25 107 ; 4.45 107 and 3.55 107 for Lactococci, Leuconostocs and Lactobacilli respectively.

Keywords: Camel Milk, Staphylococcus aureus, salmonella, microbial quality

Procedia PDF Downloads 298
15 Antibacterial Activity of Nisin: Comparison the Role of Free and Encapsulated Nisin to Control Staphylococcus Aureus Inoculated in Minced Beef

Authors: Zh. Ghasemi, S. Nouri Saeedlou, A. Ghasemi, SL. Nasiri, P. Ayremlou, P. Mahasti


The use of nisin is successfully used as antibacterial agent in various food products. Although the conclusions of the previous studies were that nisin is not very effective in meat environments. The reduced antimicrobial efficacy of nisin when applied in food has been frequently observed. The aim of this study is to evaluate the potential of free and encapsulated nisin to inhibit the growth of staphylococcus aureus in minced beef. The minimum inhibitory concentration (MIC) of nisin is determined against S. aureus using the agar dilution method. Nisin is encapsulated by spray drying, and encapsulation efficiency, mass yield and total solids content values are 47.79%, 61%, and 96.41 respectively. The study in vitro release kinetics shows highest release of nisin from zein capsules is obtained after 72 hour. This work shows that an appropriate delivery system is necessary to obtain desirable effect of nisin in meat and meat product.

Keywords: encapsulation, antibacterial activity, Staphylococcus aureus, nisin, minced beef

Procedia PDF Downloads 172
14 Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols

Authors: V. Verma, Syed Riyaz-ul-Hassan


Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk.

Keywords: PCR Technology, Staphylococcus aureus, food Pathogens, rapid and specific detection

Procedia PDF Downloads 252
13 Impact of Locally Synthesized Carbon Nanotubes against Some Local Clinical Bacterial Isolates

Authors: Abdul Matin, Muazzama Akhtar, Shahid Nisar, Saddaf Mazzar, Umer Rashid


Antibiotic resistance is an increasing concern worldwide now a day. Neisseria gonorrhea and Staphylococcus aureus are known to cause major human sexually transmitted and respiratory diseases respectively. Nanotechnology is an emerging discipline and its application in various fields especially in medical sciences is gigantic. In the present study, we synthesized multi-walled carbon nanotubes (MWNTs) using acid oxidation method and solubilized MWNTs were with length predominantly >500 nm and diameters ranging from 40 to 50 nm. The locally synthesized MWNTs were used against gram positive and negative bacteria to determine their impact on bacterial growth. Clinical isolates of Neisseria gonorrhea (isolate: 4C-11) and Staphylococcus aureus (isolate: 38541) were obtained from local hospital and normally cultured in LB broth at 37°C. Both clinical strains can be obtained on request from University of Gujarat. Spectophometric assay was performed to determine the impact of MWNTs on bacterial growth in vitro. To determine the effect of MWTNs on test organisms, various concentration of MWNTs were used and recorded observation on various time intervals to understand the growth inhibition pattern. Our results demonstrated that MWNTs exhibited toxic effects to Staphylococcus aureus while showed very limited growth inhibition to Neisseria gonorrhea, which suggests the resistant potential of Neisseria against nanoparticles. Our results clearly demonstrate the gradual decrease in bacterial numbers with passage of time when compared with control. Maximum bacterial inhibition was observed at maximum concentration (50 µg/ml). Our future work will include further characterization and mode of action of our locally synthesized MWNTs. In conclusion, we investigated and reported for the first time the inhibitory potential of locally synthesized MWNTs on local clinical isolates of Staphylococcus aureus and Neisseria gonorrhea.

Keywords: antibacterial activity, Staphylococcus aureus, multi walled carbon nanotubes, Neisseria gonorrhea, spectrophotometer assay

Procedia PDF Downloads 190
12 The Staphylococcus aureus Exotoxin Recognition Using Nanobiosensor Designed by an Antibody-Attached Nanosilica Method

Authors: Hamed Ahari, Behrouz Akbari Adreghani, Vadood Razavilar, Amirali Anvar, Sima Moradi, Hourieh Shalchi


Considering the ever increasing population and industrialization of the developmental trend of humankind's life, we are no longer able to detect the toxins produced in food products using the traditional techniques. This is due to the fact that the isolation time for food products is not cost-effective and even in most of the cases, the precision in the practical techniques like the bacterial cultivation and other techniques suffer from operator errors or the errors of the mixtures used. Hence with the advent of nanotechnology, the design of selective and smart sensors is one of the greatest industrial revelations of the quality control of food products that in few minutes time, and with a very high precision can identify the volume and toxicity of the bacteria. Methods and Materials: In this technique, based on the bacterial antibody connection to nanoparticle, a sensor was used. In this part of the research, as the basis for absorption for the recognition of bacterial toxin, medium sized silica nanoparticles of 10 nanometer in form of solid powder were utilized with Notrino brand. Then the suspension produced from agent-linked nanosilica which was connected to bacterial antibody was positioned near the samples of distilled water, which were contaminated with Staphylococcus aureus bacterial toxin with the density of 10-3, so that in case any toxin exists in the sample, a connection between toxin antigen and antibody would be formed. Finally, the light absorption related to the connection of antigen to the particle attached antibody was measured using spectrophotometry. The gene of 23S rRNA that is conserved in all Staphylococcus spp., also used as control. The accuracy of the test was monitored by using serial dilution (l0-6) of overnight cell culture of Staphylococcus spp., bacteria (OD600: 0.02 = 107 cell). It showed that the sensitivity of PCR is 10 bacteria per ml of cells within few hours. Result: The results indicate that the sensor detects up to 10-4 density. Additionally, the sensitivity of the sensors was examined after 60 days, the sensor by the 56 days had confirmatory results and started to decrease after those time periods. Conclusions: Comparing practical nano biosensory to conventional methods like that culture and biotechnology methods(such as polymerase chain reaction) is accuracy, sensitiveness and being unique. In the other way, they reduce the time from the hours to the 30 minutes.

Keywords: Recognition, Staphylococcus aureus, nanobiosensor, exotoxin

Procedia PDF Downloads 270
11 Microbiological Activity and Molecular Docking Study of Selected Steroid Derivatives of Biomedical Importance

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Sinisa Markov, Aleksandar Okljesa, Andrea Nikolic, Marija Sakac, Katarina Penov Gasi


This study considered the microbiological activity determination and molecular docking study for selected steroid derivatives of biomedical importance. Minimal inhibitory concentration (MIC) was determined for steroid derivatives against Staphylococcus aureus using macrodilution method. Some of the investigated steroid derivatives express bacteriostatic effect against Staphylococcus aureus. Molecular docking approaches are the most widely used techniques for predicting the binding mode of a ligand. Molecular docking study was done for steroid derivatives for androgen receptor negative prostate cancer cell line (PC-3) toward Human Cytochrome P450 CYP17A1. The molecules that had the smallest experimental IC50 values confirmed their ability to dock into active place using suitable molecular docking procedure. The binding disposition of those molecules was thoroughly investigated. Microbiological analysis and molecular docking study were conducted with aim to additionally characterize selected steroid derivatives for future investigation regarding their biological activity and to estimate the binding-affinities of investigated derivatives. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation and Science and Technology).

Keywords: Molecular Docking, Steroids, Staphylococcus aureus, binding affinity, minimal inhibitory concentration, pc-3 cell line

Procedia PDF Downloads 193
10 An Alternative Antimicrobial Approach to Fight Bacterial Pathogens from Phellinus linteus

Authors: S. Techaoei, K. Jarmkom, P. Eakwaropas, W. Khobjai


The objective of this research was focused on investigating in vitro antimicrobial activity of Phellinus linteus fruiting body extracts on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Phellinus linteus fruiting body was extracted with ethanol and ethyl acetate and was vaporized. The disc diffusion assay was used to assess antimicrobial activity against tested bacterial strains. Primary screening of chemical profile of crude extract was determined by using thin layer chromatography. The positive control and the negative control were used as erythromycin and dimethyl sulfoxide, respectively. Initial screening of Phellinus linteus crude extract with the disc diffusion assay demonstrated that only ethanol had greater antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. The MIC assay showed that the lower MIC was observed with 0.5 mg/ml of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus and 0.25 mg/ml. of Escherichia coli and Staphylococcus aureus, respectively. TLC chemical profile of extract was represented at Rf ≈ 0.71-0.76.

Keywords: Antimicrobial activity, Staphylococcus aureus, Escherichia coli, Methicillin-resistant Staphylococcus aureus, Phellinus linteus

Procedia PDF Downloads 157
9 Antimicrobial Activities of Lactic Acid Bacteria from Fermented Foods and Probiotic Products

Authors: Alec Chabwinja, Cannan Tawonezvi, Jerneja Vidmar, Constance Chingwaru, Walter Chingwaru


Objective: To evaluate the potential of commercial fermented / probiotic products available in Zimbabwe or internationally, and strains of Lactobacillus plantarum (L. plantarum) as prophylaxis and therapy against diarrhoeal and sexually transmitted infections. Methods: The antimicrobial potential of cultures of lactobacilli enriched from 4 Zimbabwean commercial food/beverage products, namely Dairibord Lacto sour milk (DLSM), Probrand sour milk (PSM), Kefalos Vuka cheese (KVC) and Chibuku opaque beer (COB); three probiotic products obtainable in Europe and internationally; and four strains of L. plantarum obtained from Balkan traditional cheeses and Zimbabwean foods against clinical strains of Escherichia coli (E. coli) and non-clinical strains of Candida albicans and Rhodotorula spp. was assayed using the well diffusion method. Three commercial Agar diffusion assay and a competitive exclusion assay were carried out on Mueller-Hinton agar. Results: Crude cultures of putative lactobacillus strains obtained from Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer) exhibited significantly greater antimicrobial activities against clinical strains of E. coli than strains of L. plantarum isolated from Balkan cheeses (CLP1, CLP2 or CLP3) or crude microbial cultures from commercial paediatric probiotic products (BG, PJ and PL) of a culture of Lactobacillus rhamnosus LGG (p < 0.05). Furthermore, the following has high antifungal activities against the two yeasts: supernatant-free microbial pellet (SFMP) from an extract of M. azedarach leaves (27mm ± 2.5) > cell-free culture supernatants (CFCS) from Maaz Dairy sour milk and Mnandi sour milk (approximately 26mm ± 1.8) > CFCS and SFMP from Amansi hodzeko (25mm ± 1.5) > CFCS from Parinari curatellifolia fruit (24mm ± 1.5), SFMP from P. curatellifolia fruit (24mm ± 1.4) and SFMP from mahewu (20mm ± 1.5). These cultures also showed high tolerance to acidic conditions (~pH4). Conclusions: The putative lactobacilli from four commercial Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer), and three strains of L. plantarum from Balkan cheeses (CLP1, CLP2 or CLP3) exhibited high antibacterial activities, while Maaz Dairy sour-, Mnandi sour- and Amansi hodzeko milk products had high antifungal activities. Our selection of Zimbabwean probiotic products has potential for further development into probiotic products for use in the control diarrhea caused by pathogenic strains of E. coli or yeast infections. Studies to characterise the probiotic potential of the live cultures in the products are underway.

Keywords: Lactic Acid Bacteria, Yeast, Staphylococcus aureus, inhibition, acid tolerance, Streptococcus spp

Procedia PDF Downloads 264
8 A Retrospective Cohort Study on an Outbreak of Gastroenteritis Linked to a Buffet Lunch Served during a Conference in Accra

Authors: Benjamin Osei Tutu, Sharon Annison


On 21st November, 2016, an outbreak of foodborne illness occurred after a buffet lunch served during a stakeholders’ consultation meeting held in Accra. An investigation was conducted to characterise the affected people, determine the etiologic food, the source of contamination and the etiologic agent and to implement appropriate public health measures to prevent future occurrences. A retrospective cohort study was conducted via telephone interviews, using a structured questionnaire developed from the buffet menu. A case was defined as any person suffering from symptoms of foodborne illness e.g. diarrhoea and/or abdominal cramps after eating food served during the stakeholder consultation meeting in Accra on 21st November, 2016. The exposure status of all the members of the cohort was assessed by taking the food history of each respondent during the telephone interview. The data obtained was analysed using Epi Info 7. An environmental risk assessment was conducted to ascertain the source of the food contamination. Risks of foodborne infection from the foods eaten were determined using attack rates and odds ratios. Data was obtained from 54 people who consumed food served during the stakeholders’ meeting. Out of this population, 44 people reported with symptoms of food poisoning representing 81.45% (overall attack rate). The peak incubation period was seven hours with a minimum and maximum incubation periods of four and 17 hours, respectively. The commonly reported symptoms were diarrhoea (97.73%, 43/44), vomiting (84.09%, 37/44) and abdominal cramps (75.00%, 33/44). From the incubation period, duration of illness and the symptoms, toxin-mediated food poisoning was suspected. The environmental risk assessment of the implicated catering facility indicated a lack of time/temperature control, inadequate knowledge on food safety among workers and sanitation issues. Limited number of food samples was received for microbiological analysis. Multivariate analysis indicated that illness was significantly associated with the consumption of the snacks served (OR 14.78, P < 0.001). No stool and blood or samples of etiologic food were available for organism isolation; however, the suspected etiologic agent was Staphylococcus aureus or Clostridium perfringens. The outbreak could probably be due to the consumption of unwholesome snack (tuna sandwich or chicken. The contamination and/or growth of the etiologic agent in the snack may be due to the breakdown in cleanliness, time/temperature control and good food handling practices. Training of food handlers in basic food hygiene and safety is recommended.

Keywords: Gastroenteritis, Staphylococcus aureus, conference, C. perfringens, food poisoning, Accra, buffet, cohort study, office workers

Procedia PDF Downloads 98
7 Evaluation of Antibiotic Resistance Profiles of Staphlyococci Isolated from Various Clinical Specimens

Authors: Recep Kesli, Merih Simsek, Cengiz Demir, Onur Turkyilmaz


Objective: Goal of this study was to determine the antibiotic resistance of Staphylococcus aureus (S. aureus) and Methicillin resistant staphylococcus aureus (MRSA) strains isolated at Medical Microbiology Laboratory of ANS Application and Research Hospital, Afyon Kocatepe University, Turkey. Methods: S. aureus strains isolated between October 2012 and September 2016, from various clinical specimens were evaluated retrospectively. S. aureus strains were identified by both the conventional methods and automated identification system -VITEK 2 (bio-Mérieux, Marcy l’etoile, France), and Meticillin resistance was verified using oxacillin disk with disk-diffusion method. Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria, and intermediate susceptible strains were considered as resistant. Results: Seven hundred S.aureus strains which were isolated from various clinical specimens were included in this study. These strains were mostly isolated from blood culture, tissue, wounds and bronchial aspiration. All of 306 (43,7%) were oxacillin resistant. While all the S.aureus strains were found to be susceptible to vancomycin, teicoplanin, daptomycin and linezolid, 38 (9.6 %), 77 (19.5 %), 116 (29.4 %), 152 (38.6 %) and 28 (7.1 %) were found to be resistant aganist to clindamycin, erythromycin, gentamicin, tetracycline and sulfamethoxazole/trimethoprim, retrospectively. Conclusions: Comparing to the Methicillin sensitive staphylococcus aureus (MSSA) strains, increased resistance rates of, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, gentamicin, and tetracycline were observed among the MRSA strains. In this study, the most effective antibiotic on the total of strains was found to be trimethoprim-sulfamethoxazole, the least effective antibiotic on the total of strains was found to be tetracycline.

Keywords: Antibiotic Resistance, Staphylococcus aureus, MRSA, VITEK 2

Procedia PDF Downloads 88
6 Curcumin and Its Analogues: Potent Natural Antibacterial Compounds against Staphylococcus aureus

Authors: Prince Kumar, Shamseer Kulangara Kandi, Diwan S. Rawat, Kasturi Mukhopadhyay


Staphylococcus aureus is the most pathogenic of all staphylococci, a major cause of nosocomial infections, and known for acquiring resistance towards various commonly used antibiotics. Due to the widespread use of synthetic drugs, clinicians are now facing a serious threat in healthcare. The increasing resistance in staphylococci has created a need for alternatives to these synthetic drugs. One of the alternatives is a natural plant-based medicine for both disease prevention as well as the treatment of chronic diseases. Among such natural compounds, curcumin is one of the most studied molecules and has been an integral part of traditional medicines and Ayurveda from ancient times. It is a natural polyphenolic compound with diverse pharmacological effects, including anti-inflammatory, antioxidant, anti-cancerous and antibacterial activities. In spite of its efficacy and potential, curcumin has not been approved as a therapeutic agent yet, because of its low solubility, low bioavailability, and rapid metabolism in vivo. The presence of central β-diketone moiety in curcumin is responsible for its rapid metabolism. To overcome this, in the present study, curcuminoids were designed by modifying the central β-diketone moiety of curcumin into mono carbonyl moiety and their antibacterial potency against S. aureus ATCC 29213 was determined. Further, the mode of action and hemolytic activity of the most potent curcuminoids were studied. Minimum inhibitory concentration (MIC) and in vitro killing kinetics were used to study the antibacterial activity of the designed curcuminoids. For hemolytic assay, mouse Red blood cells were incubated with curcuminoids and hemoglobin release was measured spectrophotometrically. The mode of action of curcuminoids was analysed by membrane depolarization assay using membrane potential sensitive dye 3,3’-dipropylthiacarbocyanine iodide (DiSC3(5)) through spectrofluorimetry and membrane permeabilization assay using calcein-AM through flow cytometry. Antibacterial screening of the designed library (61 curcuminoids) revealed excellent in vitro potency of six compounds against S. aureus (MIC 8 to 32 µg/ml). Moreover, these six compounds were found to be non-hemolytic up to 225 µg/ml that is much higher than their corresponding MIC values. The in vitro killing kinetics data showed five of these lead compounds to be bactericidal causing >3 log reduction in the viable cell count within 4 hrs at 5 × MIC while the sixth compound was found to be bacteriostatic. Depolarization assay revealed that all the six curcuminoids caused depolarization in their corresponding MIC range. Further, the membrane permeabilization assay showed that all the six curcuminoids caused permeabilization at 5 × MIC in 2 hrs. This membrane depolarization and permeabilization caused by curcuminoids found to be in correlation with their corresponding killing efficacy. Both these assays point out that membrane perturbations might be a primary mode of action for these curcuminoids. Overall, the present study leads us six water soluble, non-hemolytic, membrane-active curcuminoids and provided an impetus for further research on therapeutic use of these lead curcuminoids against S. aureus.

Keywords: Antibacterial, Curcumin, Staphylococcus aureus, minimum inhibitory concentration

Procedia PDF Downloads 36
5 Emergence of Fluoroquinolone Resistance in Pigs, Nigeria

Authors: Igbakura I. Luga, Alex A. Adikwu


A comparison of resistance to quinolones was carried out on isolates of Shiga toxin-producing Escherichia coliO157:H7 from cattle and mecA and nuc genes harbouring Staphylococcus aureus from pigs. The isolates were separately tested in the first and current decades of the 21st century. The objective was to demonstrate the dissemination of resistance to this frontline class of antibiotic by bacteria from food animals and bring to the limelight the spread of antibiotic resistance in Nigeria. A total of 10 isolates of the E. coli O157:H7 and 9 of mecA and nuc genes harbouring S. aureus were obtained following isolation, biochemical testing, and serological identification using the Remel Wellcolex E. coli O157:H7 test. Shiga toxin-production screening in the E. coli O157:H7 using the verotoxin E. coli reverse passive latex agglutination (VTEC-RPLA) test; and molecular identification of the mecA and nuc genes in S. aureus. Detection of the mecA and nuc genes were carried out using the protocol by the Danish Technical University (DTU) using the following primers mecA-1:5'-GGGATCATAGCGTCATTATTC-3', mecA-2: 5'-AACGATTGTGACACGATAGCC-3', nuc-1: 5'-TCAGCAAATGCATCACAAACAG-3', nuc-2: 5'-CGTAAATGCACTTGCTTCAGG-3' for the mecA and nuc genes, respectively. The nuc genes confirm the S. aureus isolates and the mecA genes as being methicillin-resistant and so pathogenic to man. The fluoroquinolones used in the antibiotic resistance testing were norfloxacin (10 µg) and ciprofloxacin (5 µg) in the E. coli O157:H7 isolates and ciprofloxacin (5 µg) in the S. aureus isolates. Susceptibility was tested using the disk diffusion method on Muller-Hinton agar. Fluoroquinolone resistance was not detected from isolates of E. coli O157:H7 from cattle. However, 44% (4/9) of the S. aureus were resistant to ciprofloxacin. Resistance of up to 44% in isolates of mecA and nuc genes harbouring S. aureus is a compelling evidence for the rapid spread of antibiotic resistance from bacteria in food animals from Nigeria. Ciprofloxacin is the drug of choice for the treatment of Typhoid fever, therefore widespread resistance to it in pathogenic bacteria is of great public health significance. The study concludes that antibiotic resistance in bacteria from food animals is on the increase in Nigeria. The National Food and Drug Administration and Control (NAFDAC) agency in Nigeria should implement the World Health Organization (WHO) global action plan on antimicrobial resistance. A good starting point can be coordinating the WHO, Office of International Epizootics (OIE), Food and Agricultural Organization (FAO) tripartite draft antimicrobial resistance monitoring and evaluation (M&E) framework in Nigeria.

Keywords: Resistance, Nigeria, Staphylococcus aureus, fluoroquinolone

Procedia PDF Downloads 309
4 Clinical Presentation and Immune Response to Intramammary Infection of Holstein-Friesian Heifers with Isolates from Two Staphylococcus aureus Lineages

Authors: Dagmara A. Niedziela, Mark P. Murphy, Orla M. Keane, Finola C. Leonard


Staphylococcus aureus is the most frequent cause of clinical and subclinical bovine mastitis in Ireland. Mastitis caused by S. aureus is often chronic and tends to recur after antibiotic treatment. This may be due to several virulence factors, including attributes that enable the bacterium to internalize into bovine mammary epithelial cells, where it may evade antibiotic treatment, or evade the host immune response. Four bovine-adapted lineages (CC71, CC97, CC151 and ST136) were identified among a collection of Irish S. aureus mastitis isolates. Genotypic variation of mastitis-causing strains may contribute to different presentations of the disease, including differences in milk somatic cell count (SCC), the main method of mastitis detection. The objective of this study was to investigate the influence of bacterial strain and lineage on host immune response, by employing cell culture methods in vitro as well as an in vivo infection model. Twelve bovine adapted S. aureus strains were examined for internalization into bovine mammary epithelial cells (bMEC) and their ability to induce an immune response from bMEC (using qPCR and ELISA). In vitro studies found differences in a variety of virulence traits between the lineages. Strains from lineages CC97 and CC71 internalized more efficiently into bovine mammary epithelial cells (bMEC) than CC151 and ST136. CC97 strains also induced immune genes in bMEC more strongly than strains from the other 3 lineages. One strain each of CC151 and CC97 that differed in their ability to cause an immune response in bMEC were selected on the basis of the above in vitro experiments. Fourteen first-lactation Holstein-Friesian cows were purchased from 2 farms on the basis of low SCC (less than 50 000 cells/ml) and infection free status. Seven cows were infected with 1.73 x 102 c.f.u. of the CC97 strain (Group 1) and another seven with 5.83 x 102 c.f.u. of the CC151 strain (Group 2). The contralateral quarter of each cow was inoculated with PBS (vehicle). Clinical signs of infection (temperature, milk and udder appearance, milk yield) were monitored for 30 days. Blood and milk samples were taken to determine bacterial counts in milk, SCC, white blood cell populations and cytokines. Differences in disease presentation in vivo between groups were observed, with two animals from Group 2 developing clinical mastitis and requiring antibiotic treatment, while one animal from Group 1 did not develop an infection for the duration of the study. Fever (temperature > 39.5⁰C) was observed in 3 animals from Group 2 and in none from Group 1. Significant differences in SCC and bacterial load between groups were observed in the initial stages of infection (week 1). Data is also being collected on cytokines and chemokines secreted during the course of infection. The results of this study suggest that a strain from lineage CC151 may cause more severe clinical mastitis, while a strain from lineage CC97 may cause mild, subclinical mastitis. Diversity between strains of S. aureus may therefore influence the clinical presentation of mastitis, which in turn may influence disease detection and treatment needs.

Keywords: Host-pathogen Interactions, host immune response, Staphylococcus aureus, Bovine mastitis

Procedia PDF Downloads 39
3 Role of Autophagic Lysosome Reformation for Cell Viability in an in vitro Infection Model

Authors: Muhammad Awais Afzal, Lorena Tuchscherr De Hauschopp, Christian Hübner


Introduction: Autophagy is an evolutionarily conserved lysosome-dependent degradation pathway, which can be induced by extrinsic and intrinsic stressors in living systems to adapt to fluctuating environmental conditions. In the context of inflammatory stress, autophagy contributes to the elimination of invading pathogens, the regulation of innate and adaptive immune mechanisms, and regulation of inflammasome activity as well as tissue damage repair. Lysosomes can be recycled from autolysosomes by the process of autophagic lysosome reformation (ALR), which depends on the presence of several proteins including Spatacsin. Thus ALR contributes to the replenishment of lysosomes that are available for fusion with autophagosomes in situations of increased autophagic turnover, e.g., during bacterial infections, inflammatory stress or sepsis. Objectives: We aimed to assess whether ALR plays a role for cell survival in an in-vitro bacterial infection model. Methods: Mouse embryonic fibroblasts (MEFs) were isolated from wild-type mice and Spatacsin (Spg11-/-) knockout mice. Wild-type MEFs and Spg11-/- MEFs were infected with Staphylococcus aureus (multiplication of infection (MOI) used was 10). After 8 and 16 hours of infection, cell viability was assessed on BD flow cytometer through propidium iodide intake. Bacterial intake by cells was also calculated by plating cell lysates on blood agar plates. Results: in-vitro infection of MEFs with Staphylococcus aureus showed a marked decrease of cell viability in ALR deficient Spatacsin knockout (Spg11-/-) MEFs after 16 hours of infection as compared to wild-type MEFs (n=3 independent experiments; p < 0.0001) although no difference was observed for bacterial intake by both genotypes. Conclusion: Suggesting that ALR is important for the defense of invading pathogens e.g. S. aureus, we observed a marked increase of cell death in an in-vitro infection model in cells with compromised ALR.

Keywords: autophagy, bacterial infections, Staphylococcus aureus, autophagic lysosome reformation

Procedia PDF Downloads 18
2 The Bacteriocin Produced by Lactic Acid Bacteria as an Antibacterial of Sub Clinic Mastitis on Dairy Cows

Authors: Nenny Harijani, Dhandy Koesoemo Wardhana


The aim of this study is to know the bacteriocin as antimicrobial activity produced by Lactic Acid Bacteria (LAB) as Antibacterial of Sub Clinic Mastitis on Dairy Cows. The antimicrobial is produced by LAB which isolates from cattle intestine can inhibit the growth Staphylococcus aureus, Steptocococcus agalactiae an Escherichia coli which were caused by dairy cattle subclinical mastitis. The failure of this bacteria growth was indicated by the formation of a clear zone surrounding the colonies on Brain Heart Infusion Agar plate. The bacteriocin was produced by Lactic Acid Bacteria (LAB) as antimicrobial, which could inhibit the growth of indicator bacteria Staphylococcus aureus, S.aglactiae and E.coli. This study was also developed bacteriocin to be used as a therapeutic of subclinical mastitis on dairy cows. The method used in this study was isolation, selection and identification of LAB using Mann Rogosa Sharp Medium, followed by characterization of the bacteriocin produced by LAB. The result of the study showed that bacteriocin isolated from beef cattle’s intestine could inhibit the growth Staphylococcus aureus, S. agalactiae, an Escherichia coli, which was indicated by clear zone surrounding the colonies on Brain Heart Infusion Agar plate. Characteristics of bacteriocin were heat-stable exposed to 80 0C for 30 minutes and 100 ⁰C for 15 minutes and inactivated by proteolytic enzymes such as trypsin. This approach has suggested the development of bacteriocin as a therapeutic agent for subclinical mastitis in dairy cattle.

Keywords: Lactic Acid Bacteria, Bacteriocin, E. coli, Staphylococcus aureus, S. agalactiae, sub

Procedia PDF Downloads 1
1 Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy

Authors: Shivankar Agrawal, Indira Sarangthem


Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell.

Keywords: Fungi, Thermophiles, antibacterial activity, antioxidant, Staphylococcus aureus, MRSA

Procedia PDF Downloads 1