Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Semi-Arid Related Abstracts

3 Status, Habitat Use, and Behaviour of Wintering Greater Flamingos Phoenicopterus roseus in Semi-Arid and Saharan Wetlands of Algeria

Authors: E. Bensaci, M. Saheb, Y. Nouidjem, A. Zoubiri, A. Bouzegag, M. Houhamdi

Abstract:

The Greater flamingo is considered the flagship species of wetlands across semi-arid and Saharan regions of Africa, especially Chotts and Sebkhas, which also concentrate significant numbers of bird species. Flamingos have different status (wintering and breeder) which vary between sites in different parts of Algeria. We conducted surveys and recorded banded flamingos across distinct regions within two climatic belts: semi-arid (Hauts Plateaux) and arid (Sahara), showing the importance of these sites in the migratory flyways particularly the relation between West Mediterranean and West Africa populations. The distribution of Greater flamingos varied between sites and seasons, where the concentrations mainly were in the wide, lees deep and salt lakes. Many of the sites (17) in the surveyed area were regularly supporting at least 1% of the regional population during winter. The analysis of Greater flamingos behaviour in different climatic regions in relation showed that the feeding is the dominant diurnal activity with rates exceeding 60% of the time. While feeding varies between seasons, and showed a negative relationship with the degree of disturbance.

Keywords: Semi-Arid, Algeria, Sahara, greater flamingo, Phoenicopterus roseus

Procedia PDF Downloads 357
2 Hydrodynamic Modeling of the Hydraulic Threshold El Haouareb

Authors: Sebai Amal, Massuel Sylvain

Abstract:

Groundwater is the key element of the development of most of the semi-arid areas where water resources are increasingly scarce due to an irregularity of precipitation, on the one hand, and an increasing demand on the other hand. This is the case of the watershed of the Central Tunisia Merguellil, object of the present study, which focuses on an implementation of an underground flows hydrodynamic model to understand the recharge processes of the Kairouan’s plain groundwater by aquifers boundary through the hydraulic threshold of El Haouareb. The construction of a conceptual geological 3D model by the Hydro GeoBuilder software has led to a definition of the aquifers geometry in the studied area thanks to the data acquired by the analysis of geologic sections of drilling and piezometers crossed shells partially or in full. Overall analyses of the piezometric Chronicles of different piezometers located at the level of the dam indicate that the influence of the dam is felt especially in the aquifer carbonate which confirms that the dynamics of this aquifer are highly correlated to the dam’s dynamic. Groundwater maps, high and low-water dam, show a flow that moves towards the threshold of El Haouareb to the discharge of the waters of Ain El Beidha discharge towards the plain of Kairouan. Software FEFLOW 5.2 steady hydrodynamic modeling to simulate the hydraulic threshold at the level of the dam El Haouareb in a satisfactory manner. However, the sensitivity study to the different parameters shows equivalence problems and a fix to calibrate the limestones’ permeability. This work could be improved by refining the timing steady and amending the representation of limestones in the model.

Keywords: Hydraulic, Hydrodynamic Modeling, Semi-Arid, lithological modeling, merguellil, central Tunisia

Procedia PDF Downloads 502
1 Impact of Nitrogen Fertilization on Soil Respiration and Net Ecosystem Production in Maize

Authors: Shirley Lamptey, Lingling Li, Junhong Xie

Abstract:

Agriculture in the semi-arid is often challenged by overuse of N, inadequate soil water, and heavy carbon emissions thereby threatening sustainability. Field experiments were conducted to investigate the effect of nitrogen fertilization levels (0-N₀, 100-N₁₀₀, 200-N₂₀₀, and 300 kg ha⁻¹-N₃₀₀) on soil water dynamics, soil respiration (Rs), net ecosystem production (NEP), and biomass yield. Zero nitrogen soils decreased Rs by 23% and 16% compared to N₃₀₀ and N₂₀₀ soils, respectively. However, biomass yield was greatest under N₃₀₀ compared with N₀, which therefore translated into increased net primary production (NPP) by 89% and NEP by 101% compared to N₀. To a lesser extent, N₂₀₀ increased net primary production by 69% and net ecosystem production by 79% compared to N₀. Grain yields were greatest under N₃₀₀ compared with N₁₀₀ and N₀, which therefore translated into increased carbon emission efficiency (CEE) by 53%, 39% and 3% under N₃₀₀ compared to N₀, N₁₀₀, and N₂₀₀ treatments respectively. Under the conditions of this study, crop yield and CEE may be optimized at nitrogen application rates in the range of 200-300 kg ha⁻¹. Based on these results, there appears potential for 200 kg N ha⁻¹ to be used to improve yield and increase CEE in the context of the rainfall-limiting environment.

Keywords: Semi-Arid, Carbon Emission, carbon emission efficiency, C sequestration, N rates

Procedia PDF Downloads 104