Search results for: wind farms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1513

Search results for: wind farms

1393 Modeling of Wind Loads on Heliostats Installed in South Algeria of Various Pylon Height

Authors: Hakim Merarda, Mounir Aksas, Toufik Arrif, Abd Elfateh Belaid, Amor Gama, Reski Khelifi

Abstract:

Knowledge of wind loads is important to develop a heliostat with good performance. These loads can be calculated by mathematical equations based on several parameters: the density, wind velocity, the aspect ratio of the mirror (height/width) and the coefficient of the height of the tower. Measurement data of the wind velocity and the density of the air are used in a numerical simulation of wind profile that was performed on heliostats with different pylon heights, with 1m^2 mirror areas and with aspect ratio of mirror equal to 1. These measurement data are taken from the meteorological station installed in Ghardaia, Algeria. The main aim of this work is to find a mathematical correlation between the wind loads and the height of the tower.

Keywords: heliostat, solar tower power, wind loads simulation, South Algeria

Procedia PDF Downloads 513
1392 The Association between Antimicrobial Usage and Biosecurity Practices on Commercial Chicken Farms in Bangladesh

Authors: Tasneem Imam, Justine S. Gibson, Mohammad Foysal, Shetu B. Das, Rashed Mahmud, Suman D. Gupta, Ahasanul Hoque, Guillaume Fournie, Joerg Henning

Abstract:

Commercial chicken production is an import livestock industry in Bangladesh. Antimicrobials are commonly used to control and prevent infectious diseases. It was hypothesized that inadequate biosecurity practices might promote antimicrobial usage on commercial chicken farms. A cross-sectional study was carried out to evaluate antimicrobial usage and farm biosecurity practices implemented on 57 layer and 83 broiler farms in eight sub-districts of the Chattogram district in Bangladesh. A questionnaire was used to collect data on antimicrobial usage and biosecurity practices on these farms. A causal framework was used to guide the development of a multi-level mixed-effects logistic regression analysis to evaluate the total and direct effects of practiced biosecurity management on prophylactic and therapeutic administration of antimicrobials. A total of 24 antimicrobials were administered in the current production cycle at the time of the survey. The most administered antimicrobials on layer farms were ciprofloxacin (37.0% of farms), amoxicillin (33.3%), and tiamulin (31.5%); however, on broiler farms, colistin (56.6% of farms), doxycycline (50.6%), and neomycin (38.6%) were most used. Only 15.3% of commercial farmers used antimicrobials entirely for therapeutic purposes, whereas 84.7% administered antimicrobials prophylactically. Inadequate biosecurity practices were more common among commercial broiler farmers compared to layer farmers. For example, only 2.4% of broiler farmers used footbaths before entering sheds compared to 22.2% of the layer farmers (p < 0.001). Farms that used antimicrobials only for therapeutic purposes (vs prophylactic) implemented more frequently adequate disease control measures, such as separating sick birds from healthy birds. This research highlighted that the prophylactic application of antimicrobials is often conducted to substitute poor biosecurity practices on commercial chicken farms. Awareness programs for farmers are crucial to inform them about the risk associated with antimicrobial usage and to highlight the economic benefits of implementing cost-effective biosecurity measures to control infectious poultry diseases.

Keywords: antimicrobial, biosecurity, broiler, layer

Procedia PDF Downloads 119
1391 Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink

Authors: Mahdi Motahari, Mojtaba Farzaneh, Armin Parsian Nejad

Abstract:

The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator.

Keywords: modelling, simulation, wind generator, fixed speed wind turbine, Matlab-Simulink

Procedia PDF Downloads 580
1390 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model

Authors: Tarek Aboueldahab, Amin Mohamed Nassar

Abstract:

Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.

Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction

Procedia PDF Downloads 407
1389 Seismic Behavior of Suction Caisson Foundations

Authors: Mohsen Saleh Asheghabadi, Alireza Jafari Jebeli

Abstract:

Increasing population growth requires more sustainable development of energy. This non-contaminated energy has an inexhaustible energy source. One of the vital parameters in such structures is the choice of foundation type. Suction caissons are now used extensively worldwide for offshore wind turbine. Considering the presence of a number of offshore wind farms in earthquake areas, the study of the seismic behavior of suction caisson is necessary for better design. In this paper, the results obtained from three suction caisson models with different diameter (D) and skirt length (L) in saturated sand were compared with centrifuge test results. All models are analyzed using 3D finite element (FE) method taking account of elasto-plastic Mohr–Coulomb constitutive model for soil which is available in the ABAQUS library. The earthquake load applied to the base of models with a maximum acceleration of 0.65g. The results showed that numerical method is in relative good agreement with centrifuge results. The settlement and rotation of foundation decrease by increasing the skirt length and foundation diameter. The sand soil outside the caisson is prone to liquefaction due to its low confinement.

Keywords: liquefaction, suction caisson foundation, offshore wind turbine, numerical analysis, seismic behavior

Procedia PDF Downloads 85
1388 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis

Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay

Abstract:

Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.

Keywords: mechanical power, torque, Savonius rotor, wind car

Procedia PDF Downloads 288
1387 Optimization of Vertical Axis Wind Turbine

Authors: C. Andreu Sabater, D. Drago, C. Key-aberg, W. Moukrim, B. Naccache

Abstract:

Present study concerns the optimization of a new vertical axis wind turbine system associated to a dynamoelectric motor. The system is composed by three Savonius wind turbines, arranged in an equilateral triangle. The idea is to propose a new concept of wind turbines through a technical approach allowing find a specific power never obtained before and therefore, a significant reduction of installation costs. In this work different wind flows across the system have been simulated, as well as precise definition of parameters and relations established between them. It will allow define the optimal rotor specific power for a given volume. Calculations have been developed with classical Savonius dimensions.

Keywords: VAWT, savonius, specific power, optimization, weibull

Procedia PDF Downloads 294
1386 Wind Speed Forecasting Based on Historical Data Using Modern Prediction Methods in Selected Sites of Geba Catchment, Ethiopia

Authors: Halefom Kidane

Abstract:

This study aims to assess the wind resource potential and characterize the urban area wind patterns in Hawassa City, Ethiopia. The estimation and characterization of wind resources are crucial for sustainable urban planning, renewable energy development, and climate change mitigation strategies. A secondary data collection method was used to carry out the study. The collected data at 2 meters was analyzed statistically and extrapolated to the standard heights of 10-meter and 30-meter heights using the power law equation. The standard deviation method was used to calculate the value of scale and shape factors. From the analysis presented, the maximum and minimum mean daily wind speed at 2 meters in 2016 was 1.33 m/s and 0.05 m/s in 2017, 1.67 m/s and 0.14 m/s in 2018, 1.61m and 0.07 m/s, respectively. The maximum monthly average wind speed of Hawassa City in 2016 at 2 meters was noticed in the month of December, which is around 0.78 m/s, while in 2017, the maximum wind speed was recorded in the month of January with a wind speed magnitude of 0.80 m/s and in 2018 June was maximum speed which is 0.76 m/s. On the other hand, October was the month with the minimum mean wind speed in all years, with a value of 0.47 m/s in 2016,0.47 in 2017 and 0.34 in 2018. The annual mean wind speed was 0.61 m/s in 2016,0.64, m/s in 2017 and 0.57 m/s in 2018 at a height of 2 meters. From extrapolation, the annual mean wind speeds for the years 2016,2017 and 2018 at 10 heights were 1.17 m/s,1.22 m/s, and 1.11 m/s, and at the height of 30 meters, were 3.34m/s,3.78 m/s, and 3.01 m/s respectively/Thus, the site consists mainly primarily classes-I of wind speed even at the extrapolated heights.

Keywords: artificial neural networks, forecasting, min-max normalization, wind speed

Procedia PDF Downloads 26
1385 Evaluation of Wind Fragility for Set Anchor Used in Sign Structure in Korea

Authors: WooYoung Jung, Buntheng Chhorn, Min-Gi Kim

Abstract:

Recently, damage to domestic facilities by strong winds and typhoons are growing. Therefore, this study focused on sign structure among various vulnerable facilities. The evaluation of the wind fragility was carried out considering the destruction of the anchor, which is one of the various failure modes of the sign structure. The performance evaluation of the anchor was carried out to derive the wind fragility. Two parameters were set and four anchor types were selected to perform the pull-out and shear tests. The resistance capacity was estimated based on the experimental results. Wind loads were estimated using Monte Carlo simulation method. Based on these results, we derived the wind fragility according to anchor type and wind exposure category. Finally, the evaluation of the wind fragility was performed according to the experimental parameters such as anchor length and anchor diameter. This study shows that the depth of anchor was more significant for the safety of structure compare to diameter of anchor.

Keywords: sign structure, wind fragility, set anchor, pull-out test, shear test, Monte Carlo simulation

Procedia PDF Downloads 255
1384 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui

Abstract:

The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: wind power, Gaussien process, modelling, forecasting

Procedia PDF Downloads 358
1383 3D Model of Rain-Wind Induced Vibration of Inclined Cable

Authors: Viet-Hung Truong, Seung-Eock Kim

Abstract:

Rain–wind induced vibration of inclined cable is a special aerodynamic phenomenon because it is easily influenced by many factors, especially the distribution of rivulet and wind velocity. This paper proposes a new 3D model of inclined cable, based on single degree-of-freedom model. Aerodynamic forces are firstly established and verified with the existing results from a 2D model. The 3D model of inclined cable is developed. The 3D model is then applied to assess the effects of wind velocity distribution and the continuity of rivulets on the cable. Finally, an inclined cable model with small sag is investigated.

Keywords: 3D model, rain - wind induced vibration, rivulet, analytical model

Procedia PDF Downloads 447
1382 An Investigation on Designing and Enhancing the Performance of H-Darrieus Wind Turbine of 10KW at the Medium Range of Wind Speed in Vietnam

Authors: Ich Long Ngo, Dinh Tai Dang, Ngoc Tu Nguyen, Minh Duc Nguyen

Abstract:

This paper describes an investigation on designing and enhancing the performance of H-Darrieus wind turbine (HDWT) of 10kW at the medium wind speed. The aerodynamic characteristics of this turbine were investigated by both theoretical and numerical approaches. The optimal design procedure was first proposed to enhance the power coefficient under various effects, such as airfoil type, number of blades, solidity, aspect ratio, and tip speed ratio. As a result, the overall design of the 10kW HDWT was well achieved, and the power characteristic of this turbine was found by numerical approach. Additionally, the maximum power coefficient predicted is up to 0.41 at the tip speed ratio of 3.7 and wind speed of 8 m/s. Particularly, a generalized correlation of power coefficient with tip speed ratio and wind speed is first proposed. These results obtained are very useful for enhancing the performance of the HDWTs placed in a country with high wind power potential like Vietnam.

Keywords: computational fluid dynamics, double multiple stream tube, h-darrieus wind turbine, renewable energy

Procedia PDF Downloads 64
1381 Remote Sensing Study of Wind Energy Potential in Agsu District

Authors: U. F. Mammadova

Abstract:

Natural resources is the main self-supplying way which is being studied in the paper. Ecologically clean and independent clean energy stock is wind one. This potential is first studied by applying remote sensing way. In any coordinate of the district, wind energy potential has been determined by measuring the potential by applying radar technique which gives a possibility to reveal 2 D view. At several heights, including 10,50,100,150,200 ms, the measurements have been realized. The achievable power generation for m2 in the district was calculated. Daily, hourly, and monthly wind energy potential data were graphed and schemed in the paper. The energy, environmental, and economic advantages of wind energy for the Agsu district were investigated by analyzing radar spectral measurements after the remote sensing process.

Keywords: wind potential, spectral radar analysis, ecological clean energy, ecological safety

Procedia PDF Downloads 44
1380 Wind Velocity Mitigation for Conceptual Design: A Spatial Decision (Support Framework)

Authors: Mohamed Khallaf, Hossein M Rizeei

Abstract:

Simulating wind pattern behavior over proposed urban features is critical in the early stage of the conceptual design of both architectural and urban disciplines. However, it is typically not possible for designers to explore the impact of wind flow profiles across new urban developments due to a lack of real data and inaccurate estimation of building parameters. Modeling the details of existing and proposed urban features and testing them against wind flows is the missing part of the conceptual design puzzle where architectural and urban discipline can focus. This research aims to develop a spatial decision-support design method utilizing LiDAR, GIS, and performance-based wind simulation technology to mitigate wind-related hazards on a design by simulating alternative design scenarios at the pedestrian level prior to its implementation in Sydney, Australia. The result of the experiment demonstrates the capability of the proposed framework to improve pedestrian comfort in relation to wind profile.

Keywords: spatial decision-support design, performance-based wind simulation, LiDAR, GIS

Procedia PDF Downloads 75
1379 Assessment of the Production System and Management Practices in Selected Layer Chicken Farms in Batangas, Philippines

Authors: Monette S. De Castro, Veneranda A. Magpantay, Christine B. Adiova, Mark D. Arboleda

Abstract:

One-hundred-layer chicken farmers were randomly selected and interviewed using structured questionnaires to assess the production system and management practices in layer chicken farms. The respondents belonged to the commercial scale operation. Results showed that the predominant rearing and housing systems were intensive/complete confinement and open-sided, while slatted was the common type of flooring used during the brood-grow period. Dekalb and Lohmann were the common chicken layer strains reared by farmers. The majority of commercial chicken layer farms preferred ready-to-lay (RTL) pullets as their replacement stocks. Selling was the easiest way for farmers to dispose of and utilize poultry manure, while veterinary waste and mortality were disposed of in pits. Biosecurity practices employed by the farmers conformed with the ASEAN Biosecurity Management Manual for Commercial Poultry Farming. Flies and odor were the major problems in most layer farms that are associated with their farm wastes. Therefore, the application of new technologies and husbandry practices through training and actual demonstrations could be implemented to further improve the layer chicken raising in the province.

Keywords: layer chicken farms, marketing, production system, waste management

Procedia PDF Downloads 12
1378 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners

Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda

Abstract:

In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.

Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner

Procedia PDF Downloads 122
1377 Wind Interference Effect on Tall Building

Authors: Atul K. Desai, Jigar K. Sevalia, Sandip A. Vasanwala

Abstract:

When a building is located in an urban area, it is exposed to a wind of different characteristics then wind over an open terrain. This is development of turbulent wake region behind an upstream building. The interaction with upstream building can produce significant changes in the response of the tall building. Here, in this paper, an attempt has been made to study wind induced interference effects on tall building. In order to study wind induced interference effect (IF) on Tall Building, initially a tall building (which is termed as Principal Building now on wards) with square plan shape has been considered with different Height to Width Ratio and total drag force is obtained considering different terrain conditions as well as different incident wind direction. Then total drag force on Principal Building is obtained by considering adjacent building which is termed as Interfering Building now on wards with different terrain conditions and incident wind angle. To execute study, Computational Fluid Dynamics (CFD) Code namely Fluent and Gambit have been used.

Keywords: computational fluid dynamics, tall building, turbulent, wake region, wind

Procedia PDF Downloads 491
1376 Simulation of Wind Solar Hybrid Power Generation for Pumping Station

Authors: Masoud Taghavi, Gholamreza Salehi, Ali Lohrasbi Nichkoohi

Abstract:

Despite the growing use of renewable energies in different fields of application of this technology in the field of water supply has been less attention. Photovoltaic and wind hybrid system is that new topics in renewable energy, including photovoltaic arrays, wind turbines, a set of batteries as a storage system and a diesel generator as a backup system is. In this investigation, first climate data including average wind speed and solar radiation at any time during the year, data collection and analysis are performed in the energy. The wind turbines in four models, photovoltaic panels at the 6 position of relative power, batteries and diesel generator capacity in seven states in the two models are combined hours of operation with renewables, diesel generator and battery bank check and a hybrid system of solar power generation-wind, which is optimized conditions, are presented.

Keywords: renewable energy, wind and solar energy, hybrid systems, cloning station

Procedia PDF Downloads 356
1375 Study on Shape Coefficient of Large Statue Building Based on CFD

Authors: Wang Guangda, Ma Jun, Zhao Caiqi, Pan Rui

Abstract:

Wind load is the main control load of large statue structures. Due to the irregular plane and elevation and uneven outer contour, statues’ shape coefficient can not pick up from the current code. Currently a common practice is based on wind tunnel test. But this method is time-consuming and high cost. In this paper, based on the fundamental theory of CFD, using fluid dynamics software of Fluent 15.0, a few large statue structure of 40 to 70m high, which are located in china , including large fairy statues and large Buddha statues, are analyzed by numerical wind tunnel. The results are contrasted with the recommended values in load code and the wind tunnel test results respectively. Results show that the shape coefficient has a good reliability by the numerical wind tunnel method of this kind of building. This will has a certain reference value of wind load values for large statues’ structure.

Keywords: large statue structure, shape coefficient, irregular structure, wind tunnel test, numerical wind tunnel simulation

Procedia PDF Downloads 335
1374 Feasibility Conditions for Wind and Hydraulic Energy Coupling

Authors: Antonin Jolly, Bertrand Aubry, Corentin Michel, Rebecca Freva

Abstract:

Wind energy depends on wind strength and varies largely in time. When it is above the demand, it generates a loss while in the opposite case; energy needs are not fully satisfied. To overcome this problem specific to irregular energies, the process of pumped-storage hydroelectricity (PSH) is studied in present paper. A combination of wind turbine and pumped storage system is more predictable and is more compliant to provide electricity supply according to daily demand. PSH system is already used in several countries to accumulate electricity by pumping water during off-peak times into a storage reservoir, and to use it during peak times to produce energy. Present work discusses a feasibility study on size and financial productivity of PSH system actuated with wind turbines specific power.

Keywords: wind turbine, hydroelectricity, energy storage, pumped-storage hydroelectricity

Procedia PDF Downloads 337
1373 Effect of Wind Braces to Earthquake Resistance of Steel Structures

Authors: H. Gokdemir

Abstract:

All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too.

Keywords: wind bracings, earthquake, steel structures, vertical and lateral loads

Procedia PDF Downloads 436
1372 Occupational Health and Safety Implications of Flower Farming on the Local Communities in Central Uganda

Authors: Charles Owenda Omulo

Abstract:

This study examines Occupational Health and Safety implications in flower farms in Central Uganda. An exploratory sequential mixed method design and methodology was employed, with multiple data collection methods, including interviews, focus group discussions, and surveys. The findings show that occupational health and safety issues remain a major problem in flower farms. While the majority of workers agreed that the farms provided them with protective equipment, the data collected from the workers point to either the improper use or ineffectiveness of this equipment. A number of workers reported skin irritations, sore and painful eyes, stiff necks, back pains, and occasional headaches that were presumably argued to have arisen from their work environment. The study also found that farms have been adjusting in an attempt to correct some of these anomalies. These included the use of biological approaches to control pests and diseases and restricting the use of some chemical formulations that are deemed to be harmful to applicators and the environment. Alongside these efforts, the study recommends increased vigilance by the flower farm owners in the provision of personal protective equipment to workers.

Keywords: flower farms, personal protective equipment, agrochemicals, rural communities, occupational health and safety

Procedia PDF Downloads 14
1371 Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology

Authors: Weng Jiantao, Wu Yiqun

Abstract:

The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island.

Keywords: CFD, island terrain, site selection, construction mechanism

Procedia PDF Downloads 465
1370 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds

Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott

Abstract:

Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.

Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 329
1369 Meteorological Effect on Exergetic and Exergoeconomics Parameters of a Wind Turbine

Authors: Muhammad Abid

Abstract:

In this study, we performed the comparative exergetic and exergoeconomic analyses of a wind turbine over a period of twelve months from 1st January to 30th December 2011. The turbine is part of a wind-PV hybrid system with hydrogen storage, located on the roof of Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia. The rated power output from this turbine is 1.7 W with a rated wind speed of 12 m/s and cut-in/cut-out wind speeds of 3/14 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine exergy efficiencies and their relation with meteorological variables, such as temperature and density. We also calculate exergoeconomic parameter R ̇_ex and its dependence on the temperature, using the average values for twelve months of the year considered for comparison purposes. The exergy efficiency changes from 0.12 to 0.31 while the density varies between 1.31 and 1.2 kg/m3 for different temperature values. The R ̇_ex has minimum and maximum values of 0.02 and 0.81, respectively, while the temperature is in the range of 8-24°C for various wind velocity values.

Keywords: exergy, efficiency, renewable energy, wind energy, meteorological variables

Procedia PDF Downloads 211
1368 Variability of Product Quality and Profitability of Fish Farms in Greece

Authors: Sophia Anastasiou, Cosmas Nathanailides, Fotini Kakali, Panagiotis Logothetis, Gregorios Kanlis

Abstract:

The method and rearing conditions of aquaculture may very between different regions and aquaculture sites. Globally, the Aquaculture industry faces a challenge to develop aquaculture methods which safeguard the economic viability of the company, the welfare of farmed fish and final product quality and sustainable development of aquaculture. Marine fish farms in Greece operate in different locations and farmed fish are exposed to a variety of rearing conditions. This paper investigates the variability of product quality and the financial performance of different marine fish farms operating in West Greece. Production parameters of gilthead sea bream fish farm such as feeding regimes, mortalities, fish densities were used to calculate the economic efficiency of six different aquaculture sites from West Greece. Samples of farmed sea bream were collected and lipid content, microbial load and filleting yield of the samples were used as quality criteria. The results indicate that Lipid content, filleting yield and microbial load of fish originating from different fish farms varied significantly with improved quality exhibited in fish farms which exhibited improved Feed conversion rates and lower mortalities. Changes in feeding management practices such as feed quality and feeding regimes have a significant impact on the financial performance of sea bass farms. Fish farms which exhibited improved feeding conversion rates also exhibited increased profitability. Improvements in the FCR explained about 13.4 % of the difference in profitability of the different aquaculture sites. Lower mortality and higher growth rates were also exhibited by the fish farms which exhibited improved FCR. It is concluded that best feeding management practices resulted in improved product quality and profitability.

Keywords: fish quality, aquaculture management, feeding management, profitability

Procedia PDF Downloads 436
1367 Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm

Authors: Je-Seok Shin, Wook-Won Kim, Jin-O Kim

Abstract:

The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm.

Keywords: offshore wind farm, optimal layout, k-clustering algorithm, minimum spanning algorithm, cable type selection, power loss cost, reliability cost

Procedia PDF Downloads 347
1366 Multi-Criteria Evaluation for the Selection Process of a Wind Power Plant's Location Using Choquet Integral

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

The objective of the present study is to select the most suitable location for a wind power plant station through Choquet integral method. The problem of selecting the location for a wind power station was considered as a multi-criteria decision-making problem. The essential and sub-criteria were specified and location selection was expressed in a hierarchic structure. Among the main criteria taken into account in this paper are wind potential, technical factors, social factors, transportation, and costs. The problem was solved by using different approaches of Choquet integral and the best location for a wind power station was determined. Then, the priority weights obtained from different Choquet integral approaches are compared and commented on.

Keywords: multi-criteria decision making, choquet integral, fuzzy sets, location of a wind power plant

Procedia PDF Downloads 377
1365 Effect of Geometry on the Aerodynamic Performance of Darrieus H Yype Vertical Axis Wind Turbine

Authors: Belkheir Noura, Rabah Kerfah, Boumehani Abdellah

Abstract:

The influence of solidity variations on the aerodynamic performance of H type vertical axis wind turbine is studied in this paper. The wind turbine model used in this paper is the three-blade wind turbine with the symmetrical airfoil, NACA0021. The length of the chord is 0.265m. Numerical investigations were implemented for the different solidity by changing the radius and blade number. A two-dimensional model of the wind turbine is employed. The approach a Reynolds-Averaged Navier–Stokes equations, completed by the K- ώ SST turbulence model, is used. Motion mesh model capability of a computational fluid dynamics (CFD) solver is used. For each value of the solidity, the aerodynamics performances and the characteristics of the flow field are studied at several values of the tip speed ratio, λ = 0.5 to λ = 3, with an incoming wind speed of 8 m/s. The results show that increasing the number of blades will reduce the maximum value of the power coefficient of the wind turbine. Also, for the VAWT with a lower solidity can obtain the maximum Cp at a high tip speed ratio. The effects of changing the radius and blade number on aerodynamic performance are almost the same. Finally, for the validation, experimental data from the literature and computational results were compared. In conclusion, to study the influence of the solidity in the performances of the wind turbine is to provide the reference for the design of H type vertical axis wind turbines.

Keywords: wind energy, darrieus h type vertical axis wind turbine, computational fluid dynamic, solidity

Procedia PDF Downloads 50
1364 Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility

Authors: Prateek Kishore, T. M. Muruganandam

Abstract:

Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel.

Keywords: method of characteristics, nozzle, supersonic wind tunnel, variable mach number

Procedia PDF Downloads 248