Search results for: water sample
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13636

Search results for: water sample

13606 Proximate, Functional and Sensory Evaluation of Some Brands of Instant Noodles in Nigeria

Authors: Olakunle Moses Makanjuola, Adebola Ajayi

Abstract:

Noodles are made from unleavened dough, rolled flat and cut into shapes. The instant noodle market is growing fast in Asian countries and is gaining popularity in the western market. This project reports on the proximate functional and sensory evaluation of different brands of instant noodles in Nigeria. The comparisons were based on proximate functional and sensory evaluation of the product. The result obtained from the proximate analysis showed that sample QHR has the highest moisture content, sample BMG has the highest protein content, sample CPO has the highest fat content, sample. The obtained result from the functional properties showed that sample BMG (Dangote noodles) had the highest volume increase after cooking due to its high swelling capacity, high water absorption capacity and high hydration capacity. Sample sensory analysis of the noodles showed that all the samples are of significant difference (at P < 0.05) in terms of colour, texture, and aroma but there is no significant difference in terms of taste and overall acceptability. Sample QHR (Indomie noodles) is the most preferred by the panelists.

Keywords: proximate, functional, sensory evaluation, noodles

Procedia PDF Downloads 213
13605 Micro Plasma an Emerging Technology to Eradicate Pesticides from Food Surface

Authors: Muhammad Saiful Islam Khan, Yun Ji Kim

Abstract:

Organophosphorus pesticides (OPPs) have been widely used to replace more persistent organochlorine pesticides because OPPs are more soluble in water and decompose rapidly in aquatic systems. Extensive uses of OPPs in modern agriculture are the major cause of the contamination of surface water. Regardless of the advantages gained by the application of pesticides in modern agriculture, they are a threat to the public health environment. With the aim of reducing possible health threats, several physical and chemical treatment processes have been studied to eliminate biological and chemical poisons from food stuff. In the present study, a micro-plasma device was used to reduce pesticides from the surface of food stuff. Pesticide free food items chosen in this study were perilla leaf, tomato, broccoli and blueberry. To evaluate the removal efficiency of pesticides, different washing methods were followed such as soaking with water, washing with bubbling water, washing with plasma-treated water and washing with chlorine water. 2 mL of 2000 ppm pesticide samples, namely, diazinone and chlorpyrifos were individuality inoculated on food surface and was air dried for 2 hours before treated with plasma. Plasma treated water was used in two different manners one is plasma treated water with bubbling the other one is aerosolized plasma treated water. The removal efficiency of pesticides from food surface was studied using HPLC. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows minimum 72% to maximum 87 % reduction for 4 min treatment irrespective to the types of food items and the types of pesticides sample, in case of soaking and bubbling the reduction is 8% to 48%. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows somewhat similar reduction ability which is significantly higher comparing to the soaking and bubbling washing system. The temperature effect of the washing systems was also evaluated; three different temperatures were set for the experiment, such as 22°C, 10°C and 4°C. Decreasing temperature from 22°C to 10°C shows a higher reduction in the case of washing with plasma and aerosolized plasma treated water, whereas an opposite trend was observed for the washing with chlorine water. Further temperature reduction from 10°C to 4°C does not show any significant reduction of pesticides, except for the washing with chlorine water. Chlorine water treatment shows lesser pesticide reduction with the decrease in temperature. The color changes of the treated sample were measured immediately and after one week to evaluate if there is any effect of washing with plasma treated water and with chlorine water. No significant color changes were observed for either of the washing systems, except for broccoli washing with chlorine water.

Keywords: chlorpyrifos, diazinone, pesticides, micro plasma

Procedia PDF Downloads 152
13604 Protein-Starch-Potassium Iodide Composite as a Sensor for Chlorine in Water

Authors: S. Mowafi, A. Abou El-Kheir, M. Abou Taleb, H. El-Sayed

Abstract:

Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Protein-starch-potassium iodide (PSPI) composite was prepared by anchoring starch and potassium iodide mixture onto the film surface using appropriate polymeric material. The possibility of using PSPI composite for determination of the concentration of chlorine ions in domestic as well as industrial water was examined. The concentration of chlorine in water was determined spectrophotometrically by measuring the intensity of blue colour of formed between starch and the released iodine obtained by interaction of potassium iodide chlorine in the tested water sample.

Keywords: chlorine, protein, potassium iodide, water

Procedia PDF Downloads 341
13603 Effect of Chemical Concentration on the Rheology of Inks for Inkjet Printing

Authors: M. G. Tadesse, J. Yu, Y. Chen, L. Wang, V. Nierstrasz, C. Loghin

Abstract:

Viscosity and surface tension are the fundamental rheological property of an ink for inkjet printing. In this work, we optimized the viscosity and surface tension of inkjet inks by varying the concentration of glycerol with water, PEDOT:PSS with glycerol and water, finally by adding the surfactant. The surface resistance of the sample was characterized by four-probe measurement principle. The change in volume of PEDOT:PSS in water, as well as the change in weight of glycerol in water has got a great influence on the viscosity on both temperature dependence and shear dependence behavior of the ink solution. The surface tension of the solution changed from 37 to 28 mN/m due to the addition of Triton. Varying the volume of PEDOT:PSS and the volume of glycerol in water has a great influence on the viscosity of the ink solution for inkjet printing. Viscosity drops from 12.5 to 9.5 mPa s with the addition of Triton at 25 oC. The PEDOT:PSS solution was found to be temperature dependence but not shear dependence as it is a Newtonian fluid. The sample was used to connect the light emitting diode (LED), and hence the electrical conductivity, with a surface resistance of 0.158 KΩ/square, was sufficient enough to give transfer current for LED lamp. The rheology of the inkjet ink is very critical for the successful droplet formation of the inkjet printing.

Keywords: shear rate, surface tension, surfactant, viscosity

Procedia PDF Downloads 142
13602 Analysis of Gas Disturbance Characteristics in Lunar Sample Storage

Authors: Lv Shizeng, Han Xiao, Zhang Yi, Ding Wenjing

Abstract:

The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation.

Keywords: lunar samples, gas disturbance, storage device, characteristic analysis

Procedia PDF Downloads 256
13601 Impure Water, a Future Disaster: A Case Study of Lahore Ground Water Quality with GIS Techniques

Authors: Rana Waqar Aslam, Urooj Saeed, Hammad Mehmood, Hameed Ullah, Imtiaz Younas

Abstract:

This research has been conducted to assess the water quality in and around Lahore Metropolitan area on the basis of three different land uses, i.e. residential, commercial, and industrial land uses. For this, 29 sample sites have been selected on the basis of simple random sampling technique. Samples were collected at the source (WASA tube wells). The criteria for selecting sample sites are to have a maximum concentration of population in the selected land uses. The results showed that in the residential land use the proportion of nitrate and turbidity is at their highest level in the areas of Allama Iqbal Town and Samanabad Town. Commercial land use of Gulberg and Data Gunj Bakhsh Town have highest level of proportion of chlorides, calcium, TDS, pH, Mg, total hardness, arsenic and alkalinity. Whereas in industrial type of land use in Ravi and Wahga Town have the proportion of arsenic, Mg, nitrate, pH, and turbidity are at their highest level. The high rate of concentration of these parameters in these areas is basically due to the old and fractured pipelines that allow bacterial as well as physiochemical contaminants to contaminate the portable water at the sources. Furthermore, it is seen in most areas that waste water from domestic, industrial, as well as municipal sources may get easy discharge into open spaces and water bodies, like, cannels, rivers, lakes that seeps and become a part of ground water. In addition, huge dumps located in Lahore are becoming the cause of ground water contamination as when the rain falls, the water gets seep into the ground and impures the ground water quality. On the basis of the derived results with the help of Geo-spatial technology ACRGIS 9.3 Interpolation (IDW), it is recommended that water filtration plants must be installed with specific parameter control. A separate team for proper inspection has to be made for water quality check at the source. Old water pipelines must be replaced with the new pipelines, and safe water depth must be ensured at the source end.

Keywords: GIS, remote sensing, pH, nitrate, disaster, IDW

Procedia PDF Downloads 196
13600 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach

Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi

Abstract:

Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.

Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty

Procedia PDF Downloads 199
13599 Fairly Irrigation Water Distribution between Upstream and Downstream Water Users in Water Shortage Periods

Authors: S. M. Hashemy Shahdany

Abstract:

Equitable water delivery becomes one of the main concerns for water authorities in arid regions. Due to water scarcity, providing reliable amount of water is not possible for most of the irrigation districts in arid regions. In this paper, water level difference control is applied to keep the water level errors equal in adjacent reaches. Distant downstream decentralized configurations of the control method are designed and tested under a realistic scenario shows canal operation under water shortage. The simulation results show that the difference controllers share the water level error among all of the users in a fair way. Therefore, water deficit has a similar influence on downstream as well as upstream and water offtakes.

Keywords: equitable water distribution, precise agriculture, sustainable agriculture, water shortage

Procedia PDF Downloads 428
13598 The Application of Cellulose-Based Halloysite-Carbon Adsorbent to Remove Chloroxylenol from Water

Authors: Laura Frydel

Abstract:

Chloroxylenol is a common ingredient in disinfectants. Due to the use of this compound in large amounts, it is more and more often detected in rivers, sewage, and also in human body fluids. In recent years, there have been concerns about the potentially harmful effects of chloroxylenol on human health and the environment. This paper presents the synthesis, a brief characterization and the use of a halloysite-carbon adsorbent for the removal of chloroxylenol from water. The template in the halloysite-carbon adsorbent was acid treated bleached halloysite, and the carbon precursor was cellulose dissolved in zinc (II) chloride, which was dissolved in 37% hydrochloric acid. The FTIR spectra before and after the adsorption process allowed to determine the presence of functional groups, bonds in the halloysite-carbon composite, and the binding mechanism of the adsorbent and adsorbate. The morphology of the bleached halloysite sample and the sample of the halloysite-carbon adsorbent were characterized by scanning electron microscopy (SEM) with surface analysis by X-ray dispersion spectrometry (EDS). The specific surface area, total pore volume and mesopore and micropore volume were determined using the ASAP 2020 volumetric adsorption analyzer. Total carbon and total organic carbon were determined for the halloysite-carbon adsorbent. The halloysite-carbon adsorbent was used to remove chloroxylenol from water. The degree of removal of chloroxylenol from water using the halloysite-carbon adsorbent was about 90%. Adsorption studies show that the halloysite-carbon composite can be used as an effective adsorbent for removing chloroxylenol from water.

Keywords: adsorption, cellulose, chloroxylenol, halloysite

Procedia PDF Downloads 155
13597 Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey

Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu

Abstract:

In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12, Mauremys rivulata = 14, Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. In this study, a total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The Multiple Antibiotic Resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.

Keywords: bacteriological quality, amphibian, reptile, antibiotic, heavy metal resistance

Procedia PDF Downloads 346
13596 Absorption Capability Examination of Heavy Metals by Spirogyra Alga in Ahvaz Water Treatment Plant

Authors: F. Fakheri Raof, F. Zobeidizadeh

Abstract:

The present study examined the potential capability of Spirogyra algae remove heavy metals Zn, Pb, Cu, and Cr from the water. For this purpose, the water treatment No. 3 of Ahvaz County in Khuzestan Province of Iran was selected as a case study. From 8 sampling stations, 4 stations were dedicated to the water samples and 4 stations to the algae samples. According to the obtained results, the concentration of the heavy metals Cr, Cu, Pb, and Zn in water samples were within the ranges of 1.98-19.53, 0.67-13.45, 1-23.18, and 2.12-83.04 µg/L. Besides, the concentration of heavy metal Cr, Pb, Cu, and Zn in spirogyra algae samples varied between the ranges 2.30-3.61, 2.06-3.43, 2.29-2.56, and 9.88-10.84 µg/L. The highest amount of metal absorption in spirogyra algae samples was related to the zinc. The obtained results also indicated that the last spirogyra algae sample which was at the inlet of Tank 4 absorbed the lowest concentration of metals. This would be due to the treatment process along the course of ponds resulted in completely pure water at the outlet without the existence of algae on the sides. The paper also provides some useful recommendations on this issue.

Keywords: absorption, Ahvaz, heavy metal, spirogyra algae, water treatment plants

Procedia PDF Downloads 230
13595 Evaluation of Coagulation Efficiency of Protein Extracts from Lupinus Albus L., Moringa Stenopetala Cufod., Trigonella Foenum-Graecum L. And Vicia Faba L. For Water Purification

Authors: Neway Adele, Adey Feleke

Abstract:

Access to clean drinking water is a basic human right. However, an estimated 1.2 billion people across the world consume unclean water daily. Interest has been growing in natural coagulants as the health and environmental concerns of conventional chemical coagulants are rising. Natural coagulants have the potential to serve as alternative water treatment agents. In this study, Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were evaluated as natural coagulants for water treatment. The protein extracts were purified from crude extracts using a protein purifier, and protein concentrations were determined by the spectrophotometric method. Small-volume coagulation efficiency tests were conducted on raw water taken from the Legedadi water treatment plant. These were done using a completely randomized design (CRD) experiment with settling times of 0 min (initial time), 90 min, 180 min and 270 min and protein extract doses of 5 mg/L, 10 mg/L, 15 mg/L and 20 mg/L. Raw water as negative control and polyelectrolyte as positive control were also included. The optical density (OD) values were measured for all the samples. At 270 min and 20 mg/L, the coagulation efficiency percentages for Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were 71%, 89%, 12% and 67% in the water sample collected in April 2019 respectively. Similarly, Lupinus albus, Moringa stenopetala and Vicia faba achieved 17%, 92% and 12% at 270 min settling times and 5 mg/L, 20 mg/L and 10 mg/L concentration in the water sample collected from August 2019, respectively. Negative control (raw water) and polyelectrolyte (positive control) were also 6 − 10% and 89 − 94% at 270 min settling time in April and August 2019, respectively. Among the four protein extracts, Moringa stenopetala showed the highest coagulation efficiency, similar to polyelectrolyte. This study concluded that Moringa stenopetala protein extract could be used as a natural coagulant for water purification in both sampling times.

Keywords: coagulation efficiency, extraction, natural coagulant, protein extract

Procedia PDF Downloads 34
13594 Training Programmes at KwaZulu Natal, South Africa for Water Professionals to Enhance Water Management

Authors: Joshua Ikpimi, Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia

Abstract:

Training programmes are integral parts of development for employees to develop themselves and also to develop the organisation. Lack of training and inadequate training adversely affect the productivity in any organisation. Lack of training in the water sector can impair development and improper management of water. Training programs are given to water professionals, especially in a developing country like South Africa, to perform well in their day to day activities. The aim of this study was to evaluate the current training program in place for water professionals at KwaZulu Natal province of South Africa. The objectives were to determine the training programs that are suitable for their job descriptions and to determine the gaps with the training programs and to make recommendations on ways to improve the training programs. This study is a quantitative study which enabled an evaluation of training programs for KwaZulu Natal water professionals. The sample population was 120 professionals across all the cities and towns in KwaZulu Natal province. The water professionals were evaluated using structured questionnaire distributed to the respondents from September to December 2017. The data was analysed using R software. The study found that province has training programs that are valuable for their water professionals. However, involvement of some professionals in administrative activities was hindered by some inappropriate training. Many areas of improvement are suggested to the province in training its water professionals. Training was found to improve performance, commitment, motivation and staff retention of water professionals in the province.

Keywords: KwaZulu Natal, performance, training, water

Procedia PDF Downloads 152
13593 The Importance of Water Temperature and Curing Conditions on Concrete Curing

Authors: Ahmad Javid Zia, Abdulkerim Ilgun, Suleyman Kamil Akin, Mustafa Altin

Abstract:

Curing conditions that help concrete, which is one of the most widely used building materials in construction sector, gain strength today is one the important issues. In this study the varying concrete strength depending on water temperature at curing stage is investigated through tests at laboratory. At laboratory the curing conditions has been determined according to both TS EN 12390-2 and regular construction site while performing the experiments on specimens. Five samples have been taken from concrete and cured under five different curing conditions and the compressive strength results of concrete specimens have been compared. One of these five curing conditions has been prepared accordance with TS EN 12390-2, the sample cured at 20 ± 2 ˚C and accepted as reference samples. Two of the remaining sample groups have been cured in 5 ± 2 ˚C and 15 ± 2 ˚C and the other two have been cured outside of the laboratory. One group of the samples which have been cured outside has been watered twice a day and the other group has not been watered at all. The experiments have been carried out on 150x150x150 mm cube samples of C20 (200 kg/cm2) and C25 (250 kg/cm2). 7 and 28 days compressive strength of specimens have been measured and compared.

Keywords: concrete curing, curing conditions, water temperature, concrete compressive strength

Procedia PDF Downloads 336
13592 A Straightforward Method for Determining Inorganic Selenium Speciations by Graphite Furnace Atomic Absorption Spectroscopy in Water Samples

Authors: Sahar Ehsani, David James, Vernon Hodge

Abstract:

In this experimental study, total selenium in solution was measured with Graphite Furnace Atomic Absorption Spectroscopy, GFAAS, then chemical reactions with sodium borohydride were used to reduce selenite to hydrogen selenide. Hydrogen selenide was then stripped from the solution by purging the solution with nitrogen gas. Since the two main speciations in oxic waters are usually selenite, Se(IV) and selenate, Se(VI), it was assumed that after Se(IV) is removed, the remaining total selenium was Se(VI). Total selenium measured after stripping gave Se(VI) concentration, and the difference of total selenium measured before and after stripping gave Se(IV) concentration. An additional step of reducing Se(VI) to Se(IV) was performed by boiling the stripped solution under acidic conditions, then removing Se(IV) by a chemical reaction with sodium borohydride. This additional procedure of removing Se(VI) from the solution is useful in rare cases where the water sample is reducing and contains selenide speciation. In this study, once Se(IV) and Se(VI) were both removed from the water sample, the remaining total selenium concentration was zero. The method was tested to determine Se(IV) and Se(VI) in both purified water and synthetic irrigation water spiked with Se(IV) and Se(VI). Average recovery of spiked samples of diluted synthetic irrigation water was 99% for Se(IV) and 97% for Se(VI). Detection limits of the method were 0.11 µg L⁻¹ and 0.32 µg L⁻¹ for Se(IV) and Se(VI), respectively.

Keywords: Analytical Method, Graphite Furnace Atomic Absorption Spectroscopy, Selenate, Selenite, Selenium Speciations

Procedia PDF Downloads 103
13591 Assessment of Heavy Metals and Radionuclide Concentrations in Mafikeng Waste Water Treatment Plant

Authors: M. Mathuthu, N. N. Gaxela, R. Y. Olobatoke

Abstract:

A study was carried out to assess the heavy metal and radionuclide concentrations of water from the waste water treatment plant in Mafikeng Local Municipality to evaluate treatment efficiency. Ten water samples were collected from various stages of water treatment which included sewage delivered to the plant, the two treatment stages and the effluent and also the community. The samples were analyzed for heavy metal content using Inductive Coupled Plasma Mass Spectrometer. Gross α/β activity concentration in water samples was evaluated by Liquid Scintillation Counting whereas the concentration of individual radionuclides was measured by gamma spectroscopy. The results showed marked reduction in the levels of heavy metal concentration from 3 µg/L (As)–670 µg/L (Na) in sewage into the plant to 2 µg/L (As)–170 µg/L (Fe) in the effluent. Beta activity was not detected in water samples except in the in-coming sewage, the concentration of which was within reference limits. However, the gross α activity in all the water samples (7.7-8.02 Bq/L) exceeded the 0.1 Bq/L limit set by World Health Organization (WHO). Gamma spectroscopy analysis revealed very high concentrations of 235U and 226Ra in water samples, with the lowest concentrations (9.35 and 5.44 Bq/L respectively) in the in-coming sewage and highest concentrations (73.8 and 47 Bq/L respectively) in the community water suggesting contamination along water processing line. All the values were considerably higher than the limits of South Africa Target Water Quality Range and WHO. However, the estimated total doses of the two radionuclides for the analyzed water samples (10.62 - 45.40 µSv yr-1) were all well below the reference level of the committed effective dose of 100 µSv yr-1 recommended by WHO.

Keywords: gross α/β activity, heavy metals, radionuclides, 235U, 226Ra, water sample

Procedia PDF Downloads 410
13590 Method Validation for Heavy Metal Determination in Spring Water and Sediments

Authors: Habtamu Abdisa

Abstract:

Spring water is particularly valuable due to its high mineral content, which is beneficial for human health. However, anthropogenic activities usually imbalance the natural levels of its composition, which can cause adverse health effects. Regular monitoring of a naturally given environmental resource is of great concern in the world today. The spectrophotometric application is one of the best methods for qualifying and quantifying the mineral contents of environmental water samples. This research was conducted to evaluate the quality of spring water concerning its heavy metal composition. A grab sampling technique was employed to collect representative samples, including duplicates. The samples were then treated with concentrated HNO3 to a pH level below 2 and stored at 4oC. The samples were digested and analyzed for cadmium (Cd), chromium (Cr), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn) following method validation. Atomic Absorption Spectrometry (AAS) was utilized for the sample analysis. Quality control measures, including blanks, duplicates, and certified reference materials (CRMs), were implemented to ensure the accuracy and precision of the analytical results. Of the metals analyzed in the water samples, Cd and Cr were found to be below the detection limit. However, the concentrations of Mn, Cu, Fe, and Zn ranged from mean values of 0.119-0.227 mg/L, 0.142-0.166 mg/L, 0.183-0.267 mg/L, and 0.074-0.181 mg/L, respectively. Sediment analysis revealed mean concentration ranges of 348.31-429.21 mg/kg, 0.23-0.28 mg/kg, 18.73-22.84 mg/kg, 2.76-3.15 mg/kg, 941.84-1128.56 mg/kg, and 42.39-66.53 mg/kg for Mn, Cd, Cu, Cr, Fe, and Zn, respectively. The study results established that the evaluated spring water and its associated sediment met the regulatory standards and guidelines for heavy metal concentrations. Furthermore, this research can enhance the quality assurance and control processes for environmental sample analysis, ensuring the generation of reliable data.

Keywords: method validation, heavy metal, spring water, sediment, method detection limit

Procedia PDF Downloads 31
13589 Variations in Water Supply and Quality in Selected Groundwater Sources in a Part of Southwest Nigeria

Authors: Samuel Olajide Babawale, O. O. Ogunkoya

Abstract:

The study mapped selected wells in Inisa town, Osun state, in the guinea savanna region of southwest Nigeria, and determined the water quality considering certain elements. It also assessed the variation in the elevation of the water table surface to depth of the wells in the months of August and November. This is with a view to determine the level of contamination of the water with respect to land use and anthropogenic activities, and also to determine the variation that occurs in the quantity of well water in the rainy season and the start of the dry season. Results show a random pattern of the distribution of the mapped wells and shows that there is a shallow water table in the study area. The temporal changes in the elevation show that there are no significant variations in the depth of the water table surface over the period of study implying that there is a sufficient amount of water available to the town all year round. It also shows a high concentration of sodium in the water sample analyzed compared to other elements that were considered, which include iron, copper, calcium, and lead. This is attributed majorly to anthropogenic activities through the disposal of waste in landfill sites. There is a low concentration of lead which is a good indication of a reduced level of pollution.

Keywords: anthropogenic activities, land use, temporal changes, water quality

Procedia PDF Downloads 110
13588 A Case Study on the Drivers of Household Water Consumption for Different Socio-Economic Classes in Selected Communities of Metro Manila, Philippines

Authors: Maria Anjelica P. Ancheta, Roberto S. Soriano, Erickson L. Llaguno

Abstract:

The main purpose of this study is to examine whether there is a significant relationship between socio-economic class and household water supply demand, through determining or verifying the factors governing water use consumption patterns of households from a sampling from different socio-economic classes in Metro Manila, the national capital region of the Philippines. This study is also an opportunity to augment the lack of local academic literature due to the very few publications on urban household water demand after 1999. In over 600 Metro Manila households, a rapid survey was conducted on their average monthly water consumption and habits on household water usage. The questions in the rapid survey were based on an extensive review of literature on urban household water demand. Sample households were divided into socio-economic classes A-B and C-D. Cluster analysis, dummy coding and outlier tests were done to prepare the data for regression analysis. Subsequently, backward stepwise regression analysis was used in order to determine different statistical models to describe the determinants of water consumption. The key finding of this study is that the socio-economic class of a household in Metro Manila is a significant factor in water consumption. A-B households consume more water in contrast to C-D families based on the mean average water consumption for A-B and C-D households are 36.75 m3 and 18.92 m3, respectively. The most significant proxy factors of socio-economic class that were related to household water consumption were examined in order to suggest improvements in policy formulation and household water demand management.

Keywords: household water uses, socio-economic classes, urban planning, urban water demand management

Procedia PDF Downloads 261
13587 Design and Synthesis of Copper Doped Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal from Waste Water

Authors: Feleke Terefe Fanta

Abstract:

The existence of heavy metals and microbial contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, has become a public concern as human population increases and land development continues. This is because effluents from chemical and pharmaceutical industries are directly discharged onto surrounding land, irrigation fields and surface water bodies. In the present study, we synthesised zeolites and copper- zeolite composite based adsorbent through cost effective and simple approach to mitigate the problem. The study presents determination of heavy metal content and microbial contamination level of waste water sample collected from Akaki river using zeolites and copper- doped zeolites as adsorbents. The synthesis of copper- zeolite X composite was carried out by ion exchange method of copper ions into zeolites frameworks. The optimum amount of copper ions loaded into the zeolites frameworks were studied using the pore size determination concept via iodine test. The copper- loaded zeolites were characterized by X-ray diffraction (XRD). The XRD analysis showed clear difference in phase purity of zeolite before and after copper ion exchange. The concentration of Cd, Cr, and Pb were determined in waste water sample using atomic absorption spectrophotometry. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. The concentration of Cd, Cr, and Pb decreased to 0.005, 0.052 and BDL mg/L for sample treated with bare zeolite X while a further decrease in concentration of Cd, Cr, and Pb (0.005, BDL and BDL) mg/L respectively was observed for the sample treated with copper- zeolite composite. The antimicrobial activity was investigated by exposing the total coliform to the Zeolite X and Copper-modified Zeolite X. Zeolite X and Copper-modified Zeolite X showed complete elimination of microbilas after 90 and 50 minutes contact time respectively. This demonstrates effectiveness of copper- zeolite composite as efficient disinfectant. To understand the mode of heavy metals removal and antimicrobial activity of the copper-loaded zeolites; the adsorbent dose, contact time, temperature was studied. Overall, the results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbent.

Keywords: waste water, copper doped zeolite x, adsorption heavy metal, disinfection

Procedia PDF Downloads 44
13586 Biochemical Evaluation of Air Conditioning West Water in Jeddah City: Concept of Sustainable Water Resources

Authors: D. Alromi, A. Alansari, S. Alghamdi, E. Jambi

Abstract:

As the need for water is increasing globally, and the available water resources are barely meeting the current quality of life and economy. Air conditioning (AC) condensate water could be explored as an alternative water source, which could be considered within the global calculations of the water supply. The objective of this study is to better understand the potential for recovery of condensate water from air conditioning systems. The results generated so far showed that the AC produces a high quantity of water, and data analysis revealed that the amount of water is positively and significantly correlated with the humidity (P <= 0.05). In the meantime, the amount of heavy metals has been measuring using ICP-OES. The results, in terms of quantity, clearly show that the AC can be used as an alternative source of water, especially in the regions characterized by high humidity. The results also showed that the amount of produced water depends on the type of AC.

Keywords: air conditioning systems, water quantity, water resources, wastewater

Procedia PDF Downloads 167
13585 Science and Monitoring Underpinning River Restoration: A Case Study

Authors: Geoffrey Gilfillan, Peter Barham, Lisa Smallwood, David Harper

Abstract:

The ‘Welland for People and Wildlife’ project aimed to improve the River Welland’s ecology and water quality, and to make it more accessible to the community of Market Harborough. A joint monitoring project by the Welland Rivers Trust & University of Leicester was incorporated into the design. The techniques that have been used to measure its success are hydrological, geomorphological, and water quality monitoring, species and habitat surveys, and community engagement. Early results show improvements to flow and habitat diversity, water quality and biodiversity of the river environment. Barrier removal has increased stickleback mating activity, and decreased parasitically infected fish in sample catches. The habitats provided by the berms now boast over 25 native plant species, and the river is clearer, cleaner and with better-oxygenated water.

Keywords: community engagement, ecological monitoring, river restoration, water quality

Procedia PDF Downloads 200
13584 Importance of Determining the Water Needs of Crops in the Management of Water Resources in the Province of Djelfa

Authors: Imessaoudene Y., Mouhouche B., Sengouga A., Kadir M.

Abstract:

The objective of this work is to determine the virtual water of main crops grown in the province of Djelfa and water use efficiency (W.U.E.), Which is essential to approach the application and better integration with the offer in the region. In the case of agricultural production, virtual water is the volume of water evapo-transpired by crops. It depends on particular on the expertise of its producers and its global production area, warm and dry climates induce higher consumption. At the scale of the province, the determination of the quantities of virtual water is done by calculating the unit water requirements related to water irrigated hectare and total rainfall over the crop using the Cropwat 8.0 F.A.O. software. Quantifying the volume of agricultural virtual water of crops practiced in the study area demonstrates the quantitative importance of these volumes of water in terms of available water resources in the province, so the advantages which can be the concept of virtual water as an analysis tool and decision support for the management and distribution of water in scarcity situation.

Keywords: virtual water, water use efficiency, water requirements, Djelfa

Procedia PDF Downloads 396
13583 Determination the Effects of Physico-Chemical Parameters on Groundwater Status by Water Quality Index

Authors: Samaneh Abolli, Mahdi Ahmadi Nasab, Kamyar Yaghmaeian, Mahmood Alimohammadi

Abstract:

The quality of drinking water, in addition to the presence of physicochemical parameters, depends on the type and geographical location of water sources. In this study, groundwater quality was investigated by sampling total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), Cl, Ca²⁺, and Mg²⁺ parameters in 13 sites, and 40 water samples were sent to the laboratory. Electrometric, titration, and spectrophotometer methods were used. In the next step, the water quality index (WQI) was used to investigate the impact and weight of each parameter in the groundwater. The results showed that only the mean of magnesium ion (40.88 mg/l) was lower than the guidelines of World Health Organization (WHO). Interpreting the WQI based on the WHO guidelines showed that the statuses of 21, 11, and 7 samples were very poor, poor, and average quality, respectively, and one sample had excellent quality. Among the studied parameters, the means of EC (2,087.49 mS/cm) and Cl (1,015.87 mg/l) exceeded the global and national limits. Classifying water quality of TH was very hard (87.5%), hard (7.5%), and moderate (5%), respectively. Based on the geographical distribution, the drinking water index in sites 4 and 11 did not have acceptable quality. Chloride ion was identified as the responsible pollutant and the most important ion for raising the index. The outputs of statistical tests and Spearman correlation had significant and direct correlation (p < 0.05, r > 0.7) between TDS, EC, and chloride, EC and chloride, as well as TH, Ca²⁺, and Mg²⁺.

Keywords: water quality index, groundwater, chloride, GIS, Garmsar

Procedia PDF Downloads 68
13582 An Innovative Use of Flow Columns in Electrocoagulation Reactor to Control Water Temperature

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, David Phipps, Ortoneda Pedrola

Abstract:

Temperature is an essential parameter in the electrocoagulation process (EC) as it governs the solubility of electrodes and the precipitates and the collision rate of particles in water being treated. Although it has been about 100 years since the EC technology was invented and applied in water and wastewater treatment, the effects of temperature on the its performance were insufficiently investigated. Thus, the present project aims to fill this gap by an innovative use of perforated flow columns in the designing of a new EC reactor (ECR1). The new reactor (ECR1) consisted of a Perspex made cylinder container supplied with a flow column consisted of perorated discoid electrodes that made from aluminium. The flow column has been installed vertically, half submerged in the water being treated, inside a plastic cylinder. The unsubmerged part of the flow column works as a radiator for the water being treated. In order to investigate the performance of ECR1; water samples with different initial temperatures (15, 20, 25, 30, and 35 °C) to the ECR1 for 20 min. Temperature of effluent water samples were measured using Hanna meter (Model: HI 98130). The obtained results demonstrated that the ECR1 reduced water temperature from 35, 30, and 25 °C to 24.6, 23.8, and 21.8 °C respectively. While low water temperature, 15 °C, increased slowly to reach 19.1 °C after 15 minutes and kept the same level till the end of the treatment period. At the same time, water sample with initial temperature of 20 °C showed almost a steady level of temperature along the treatment process, where the temperature increased negligibly from 20 to 20.1 °C after 20 minutes of treatment. In conclusion, ECR1 is able to control the temperature of water being treated around the room temperature even when the initial temperature was high (35 °C) or low (15 °C).

Keywords: electrocoagulation, flow column, treatment, water temperature

Procedia PDF Downloads 394
13581 Water Crisis Management in a Tourism Dependent Community

Authors: Aishath Shakeela

Abstract:

At a global level, water stewardship, water stress and water security are crucial factors in tourism planning and development considerations. Challenges associated with water is of particular concern to the Maldives as there is limited availability of freshwater, high dependency on desalinated water, and high unit cost associated with desalinating water. While the Maldives is promoted as an example of sustainable tourism, a key sustainability challenge facing tourism dependent communities is the efficient use and management of available water resources. A water crisis event in the capital island of Maldives highlighted how precarious water related issues are in this tourism dependent destination. Applying netnography, the focus of this working paper is to present community perceptions of how government policies addressed Malé Water and Sewerage Company (MWSC) water crisis event.

Keywords: crisis management, government policies, Maldives, tourism, water

Procedia PDF Downloads 495
13580 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO₂ Nanoparticles

Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir

Abstract:

In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO₂ and Ag-TiO₂ in slurry form, the photocatalytic degradation was studied by measuring the COD parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO₂ nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.

Keywords: photocatalyst, Ag-doped, TiO₂, produced water, nanoparticles

Procedia PDF Downloads 94
13579 Solar Aided Vacuum Desalination of Sea-Water

Authors: Miraz Hafiz Rossy

Abstract:

As part of planning to address shortfalls in fresh water supply for the world, Sea water can be a huge source of fresh water. But Desalinating sea water to get fresh water could require a lots of fossil fuels. To save the fossil fuel in terms of save the green world but meet the up growing need for fresh water, a very useful but energy efficient method needs to be introduced. Vacuum desalination of sea water using only the Renewable energy can be an effective solution to this issue. Taking advantage of sensitivity of water's boiling point to air pressure a vacuum desalination water treatment plant can be designed which would only use sea water as feed water and solar energy as fuel to produce fresh drinking water. The study indicates that reducing the air pressure to a certain value water can be boiled at very low temperature. Using solar energy to provide the condensation and the vacuum creation would be very useful and efficient. Compared to existing resources, desalination is considered to be expensive, but using only renewable energy the cost can be reduced significantly. Despite its very few drawbacks, it can be considered a possible solution to the world's fresh water shortages.

Keywords: desalination, scarcity of fresh water, water purification, water treatment

Procedia PDF Downloads 353
13578 Phytoremediation Rates of Water Hyacinth in an Aquaculture Effluent Hydroponic System

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Conventional wastewater treatment plants of activated carbon, electrodialysis, ion exchange, reverse osmosis etc. are expensive to install, operate and maintain especially in developing countries; therefore, the use of aquatic macrophytes for wastewater purification is a viable alternative. On the first day of experimentation, approximately 100g of water hyacinth was introduced into the hydroponic units in four replicates. The water quality parameters measured were total suspended solids (TSS), pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), phosphate–phosphorus (PO43--P), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 438.2 g, 600.7 g, 688.2 g and 725.7 g. Water hyacinth was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 1.9% to 14.7%, EC from 49.8% to 97.0%, TDS from 50.4% to 97.6%, TSS from 34.0% to 78.3%, NH4+-N from 38.9% to 85.2%, NO2--N from 0% to 84.6%, NO3--N from 63.2% to 98.8% and PO43--P from 10% to 88.0%. Paired sample t-test shows that at 95% confidence level, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests that the use of water hyacinth is valuable in the design and operation of aquaculture effluent treatment and should therefore be adopted by environmental and wastewater managers.

Keywords: aquaculture effluent, phytoremediation, pollutant, water hyacinth

Procedia PDF Downloads 238
13577 A Method for Quantifying Arsenolipids in Sea Water by HPLC-High Resolution Mass Spectrometry

Authors: Muslim Khan, Kenneth B. Jensen, Kevin A. Francesconi

Abstract:

Trace amounts (ca 1 µg/L, 13 nM) of arsenic are present in sea water mostly as the oxyanion arsenate. In contrast, arsenic is present in marine biota (animals and algae) at very high levels (up to100,000 µg/kg) a significant portion of which is present as lipid-soluble compounds collectively termed arsenolipids. The complex nature of sea water presents an analytical challenge to detect trace compounds and monitor their environmental path. We developed a simple method using liquid-liquid extraction combined with HPLC-High Resolution Mass Spectrometer capable of detecting trace of arsenolipids (99 % of the sample matrix while recovering > 80 % of the six target arsenolipids with limit of detection of 0.003 µg/L.)

Keywords: arsenolipids, sea water, HPLC-high resolution mass spectrometry

Procedia PDF Downloads 338