Search results for: water pipeline model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23233

Search results for: water pipeline model

3553 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller

Procedia PDF Downloads 205
3552 Colour Characteristics of Dried Cocoa Using Shallow Box Fermentation Technique

Authors: Khairul Bariah Sulaiman, Tajul Aris Yang

Abstract:

Fermentation is well known as an essential process in cocoa beans. Besides to develop the precursor of cocoa flavour, it also induce the colour changes in the beans.The fermentation process is reported to be influenced by duration of pod storage and fermentation. Therefore, this study was conducted to evaluate colour of Malaysian cocoa beans and how the pods storage and fermentation duration using shallow box technique will effect on it characteristics. There are two factors being studied ie duration of cocoa pod storage (0, 2, 4, and 6 days) and duration of cocoa fermentation (0, 1, 2, 3, 4 and 5 days). The experiment is arranged in 4 x 6 factorial design with 24 treatments and arrangement is in a Completely Randomised Design (CRD). The produced beans is inspected for colour changes under artificial light during cut test and divided into four groups of colour namely fully brown, purple brown, fully purple and slaty. Cut tests indicated that cocoa beans which are directly dried without undergone fermentation has the highest slaty percentage. However, application of pods storage before fermentation process is found to decrease the slaty percentage. In contrast, the percentages of fully brown beans start to dominate after two days of fermentation, especially from four and six days of pods storage batch. Whereas, almost all batch have percentage of fully purple less than 20%. Interestingly, the percentage of purple brown beans are scattered in the entire beans batch regardless any specific trend. Meanwhile, statistical analysis using General Linear Model showed that the pods storage has a significant effect on the colour characteristic of the Malaysian dried beans compared to fermentation duration.

Keywords: cocoa beans, colour, fermentation, shallow box

Procedia PDF Downloads 452
3551 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 83
3550 Expert Based System Design for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

Recently, an increasing number of researchers have been focusing on working out realistic solutions to sustainability problems. As sustainability issues gain higher importance for organisations, the management of such decisions becomes critical. Knowledge representation is a fundamental issue of complex knowledge based systems. Many types of sustainability problems would benefit from models based on experts’ knowledge. Cognitive maps have been used for analyzing and aiding decision making. A cognitive map can be made of almost any system or problem. A fuzzy cognitive map (FCM) can successfully represent knowledge and human experience, introducing concepts to represent the essential elements and the cause and effect relationships among the concepts to model the behavior of any system. Integrated waste management systems (IWMS) are complex systems that can be decomposed to non-related and related subsystems and elements, where many factors have to be taken into consideration that may be complementary, contradictory, and competitive; these factors influence each other and determine the overall decision process of the system. The goal of the present paper is to construct an efficient IWMS which considers various factors. The authors’ intention is to propose an expert based system design approach for implementing expert decision support in the area of IWMSs and introduces an appropriate methodology for the development and analysis of group FCM. A framework for such a methodology consisting of the development and application phases is presented.

Keywords: factors, fuzzy cognitive map, group decision, integrated waste management system

Procedia PDF Downloads 246
3549 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 62
3548 Preservice EFL Teachers in a Blended Professional Development Program: Learning to Teach Speech Acts

Authors: Mei-Hui Liu

Abstract:

This study examines the effectiveness of a blended professional development program on preservice EFL (English as a foreign language) teachers’ learning to teach speech acts with the advent of Information and Communication Technology, researchers and scholars underscore the significance of integrating online and face-to-face learning opportunities in the teacher education field. Yet, a paucity of evidence has been documented to investigate the extent to which such a blended professional learning model may impact real classroom practice and student learning outcome. This yearlong project involves various stakeholders, including 25 preservice teachers, 5 English professionals, and 45 secondary school students. Multiple data sources collected are surveys, interviews, reflection journals, online discussion messages, artifacts, and discourse completion tests. Relying on the theoretical lenses of Community of Inquiry, data analysis depicts the nature and process of preservice teachers’ professional development in this blended learning community, which triggers and fosters both face-to-face and synchronous/asynchronous online interactions among preservice teachers and English professionals (i.e., university faculty and in-service teachers). Also included is the student learning outcome after preservice teachers put what they learn from the support community into instructional practice. Pedagogical implications and research suggestions are further provided based on the research findings and limitations.

Keywords: blended professional development, preservice EFL teachers, speech act instruction, student learning outcome

Procedia PDF Downloads 188
3547 Integrating Personality Traits and Travel Motivations for Enhanced Small and Medium-sized Tourism Enterprises (SMEs) Strategies: A Case Study of Cumbria, United Kingdom

Authors: Delia Gabriela Moisa, Demos Parapanos, Tim Heap

Abstract:

The tourism sector is mainly comprised of small and medium-sized tourism enterprises (SMEs), representing approximately 80% of global businesses in this field. These entities require focused attention and support to address challenges, ensuring their competitiveness and relevance in a dynamic industry characterized by continuously changing customer preferences. To address these challenges, it becomes imperative to consider not only socio-demographic factors but also delve into the intricate interplay of psychological elements influencing consumer behavior. This study investigates the impact of personality traits and travel motivations on visitor activities in Cumbria, United Kingdom, an iconic region marked by UNESCO World Heritage Sites, including The Lake District National Park and Hadrian's Wall. With a £4.1 billion tourism industry primarily driven by SMEs, Cumbria serves as an ideal setting for examining the relationship between tourist psychology and activities. Employing the Big Five personality model and the Travel Career Pattern motivation theory, this study aims to explain the relationship between psychological factors and tourist activities. The study further explores SME perspectives on personality-based market segmentation, providing strategic insights into addressing evolving tourist preferences.This pioneering mixed-methods study integrates quantitative data from 330 visitor surveys, subsequently complemented by qualitative insights from tourism SME representatives. The findings unveil that socio-demographic factors do not exhibit statistically significant variations in the activities pursued by visitors in Cumbria. However, significant correlations emerge between personality traits and motivations with preferred visitor activities. Open-minded tourists gravitate towards events and cultural activities, while Conscientious individuals favor cultural pursuits. Extraverted tourists lean towards adventurous, recreational, and wellness activities, while Agreeable personalities opt for lake cruises. Interestingly, a contrasting trend emerges as Extraversion increases, leading to a decrease in interest in cultural activities. Similarly, heightened Agreeableness corresponds to a decrease in interest in adventurous activities. Furthermore, travel motivations, including nostalgia and building relationships, drive event participation, while self-improvement and novelty-seeking lead to adventurous activities. Additionally, qualitative insights from tourism SME representatives underscore the value of targeted messaging aligned with visitor personalities for enhancing loyalty and experiences. This study contributes significantly to scholarship through its novel framework, integrating tourist psychology with activities and industry perspectives. The proposed conceptual model holds substantial practical implications for SMEs to formulate personalized offerings, optimize marketing, and strategically allocate resources tailored to tourist personalities. While the focus is on Cumbria, the methodology's universal applicability offers valuable insights for destinations globally seeking a competitive advantage. Future research addressing scale reliability and geographic specificity limitations can further advance knowledge on this critical relationship between visitor psychology, individual preferences, and industry imperatives. Moreover, by extending the investigation to other districts, future studies could draw comparisons and contrasts in the results, providing a more nuanced understanding of the factors influencing visitor psychology and preferences.

Keywords: personality trait, SME, tourist behaviour, tourist motivation, visitor activity

Procedia PDF Downloads 23
3546 Educational Reforms in Algeria: Dilemmas of Globalization, Equity, and Decolonization

Authors: Fella Lahmar

Abstract:

This chapter investigates the educational reforms in Algeria, highlighting the challenges and complexities that arise in the context of globalization, equity, and decolonization. While Algeria’s education system historically had a socialist-economic model grounded in Islamic values, contemporary reforms reflect global influences and aspirations for cultural authenticity. The study employed a qualitative approach, utilizing semi-structured interviews with a diverse sample of 15 participants intimately involved in the Algerian education system. Analysis of the data reveals a discrepancy between the educational system’s pedagogical practices and students’ diverse learning needs, implying ramifications for educational equity and social justice. Furthermore, a critical tension was evident between global influences, local cultural authenticity, and the endeavor to decolonize education. In conclusion, the chapter advocates for reforms that prioritize the students’ holistic development and well-being while fostering intrinsic motivation and engagement. This entails re-evaluating curriculum frameworks, assessment strategies, and pedagogies in light of Algeria’s cultural and religious heritage. The chapter also calls for future research to explore methods for innovatively integrating cultural heritage into education in ways to cultivate learners who are both locally grounded and globally aware.

Keywords: impact of globalization on education, parental involvement in education, marketization of education, policy enactment and reform, curriculum overload, holistic approach, shadow education

Procedia PDF Downloads 44
3545 Real-Time Pedestrian Detection Method Based on Improved YOLOv3

Authors: Jingting Luo, Yong Wang, Ying Wang

Abstract:

Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.

Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3

Procedia PDF Downloads 111
3544 Using Reading to Learn Pedagogy to Promote Chinese Written Vocabulary Acquisition: An Evaluative Study

Authors: Mengping Cheng, John Everatt, Alison Arrow, Amanda Denston

Abstract:

Based on the available evidence, Chinese heritage language learners have a basic level of Chinese language proficiency with lower capability in literacy compared to speaking. Low levels of literacy are likely related to the lack of reading activities in current textbook-based pedagogy used in Chinese community schools. The present study aims to use Reading to Learn pedagogy which is a top-down language learning model and test the effectiveness of Reading to Learn on Chinese heritage learners’ written vocabulary acquisition. A quasi-experiment with the pre-test/post-test non-equivalent group design was conducted. The experimental group received Reading to Learn instructions and the control group had traditional textbook-based instructions. Participants were given Chinese characters tasks (a recognize-and-read task and a listen-and-point task), vocabulary tasks (a receptive vocabulary task and a productive vocabulary task) and a sentence cloze test in pre-tests and post-tests. Data collection is in progress and results will be available shortly. If the results show more improvement of Chinese written vocabulary in the experimental group than in the control group, it will be recommended that Reading to Learn pedagogy is valuable to be used to maintain and develop Chinese heritage language literacy.

Keywords: Chinese heritage language, experimental research, Reading to Learn pedagogy, vocabulary acquisition

Procedia PDF Downloads 121
3543 Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations

Authors: Y. Ghiassi-Farrokhfal

Abstract:

The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time.

Keywords: solar energy, battery storage, electric vehicle, charging stations

Procedia PDF Downloads 189
3542 Analysis of Environmental Sustainability in Post- Earthquake Reconstruction : A Case of Barpak, Nepal

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

Barpak in northern Nepal represents a unique identity expressed through the local rituals, values, lifeways and the styles of vernacular architecture. The traditional residential buildings and construction practices adopted by the dominant ethnic groups: Ghales and Gurungs, reflect environmental, social, cultural and economic concerns. However, most of these buildings did not survive the Gorkha earthquake in 2015 that made many residents skeptical about their strength to resist future disasters. This led Barpak residents to prefer modern housing designs primarily for the strength but additionally for convenience and access to earthquake relief funds. Post-earthquake reconstruction has transformed the cohesive community, developed over hundreds of years into a haphazard settlement with the imposition of externally-driven building models. Housing guidelines provided for the community reconstruction and earthquake resilience have been used as a singular template, similar to other communities on different geographical locations. The design and construction of these buildings do not take into account the local, historical, environmental, social, cultural and economic context of Barpak. In addition to the physical transformation of houses and the settlement, the consequences continue to develop challenges to sustainability. This paper identifies the major challenges for environmental sustainability with the construction of new houses in post-earthquake Barpak. Mixed methods such as interviews, focus groups, site observation, and documentation, and analysis of housing and neighborhood design have been used for data collection. The discernible changing situation of this settlement due to the new housing has included reduced climatic adaptation and thermal comfort, increased consumption of agricultural land and water, minimized use of local building materials, and an increase in energy demand. The research has identified that reconstruction housing practices happening in Barpak, while responding to crucial needs for disaster recovery and resilience, are also leading this community towards an unsustainable future. This study has also integrated environmental, social, cultural and economic parameters into an assessment framework that could be used to develop place-based design guidelines in the context of other post-earthquake reconstruction efforts. This framework seeks to minimize the unintended repercussions of unsustainable reconstruction interventions, support the vitality of vernacular architecture and traditional lifeways and respond to context-based needs in coordination with residents.

Keywords: earthquake, environment, reconstruction, sustainability

Procedia PDF Downloads 85
3541 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modelling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modelling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modelling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: content analysis, factors, integrated waste management system, time series

Procedia PDF Downloads 290
3540 Simplifying Seismic Vulnerability Analysis for Existing Reinforced Concrete Buildings

Authors: Maryam Solgi, Behzad Shahmohammadi, Morteza Raissi Dehkordi

Abstract:

One of the main steps for seismic retrofitting of buildings is to determine the vulnerability of structures. While current procedures for evaluating existing buildings are complicated, and there is no limitation between short, middle-high, and tall buildings. This research utilizes a simplified method for assessing structures, which is adequate for existing reinforced concrete buildings. To approach this aim, Simple Lateral Mechanisms Analysis (SLaMA) procedure proposed by NZSEE (New Zealand Society for Earthquake Engineering) has been carried out. In this study, three RC moment-resisting frame buildings are determined. First, these buildings have been evaluated by inelastic static procedure (Pushover) based on acceptance criteria. Then, Park-Ang Damage Index is determined for the whole members of each building by Inelastic Time History Analysis. Next, the Simple Lateral Mechanisms Analysis procedure, a hand method, is carried out to define the capacity of structures. Ultimately, existing procedures are compared with Peak Ground Acceleration caused to fail (PGAfail). The results of this comparison emphasize that the Pushover procedure and SLaMA method define a greater value of PGAfail than the Park-Ang Damage model.

Keywords: peak ground acceleration caused to fail, reinforced concrete moment-frame buildings, seismic vulnerability analysis, simple lateral mechanisms analysis

Procedia PDF Downloads 51
3539 An Analytical Approach to Assess and Compare the Vulnerability Risk of Operating Systems

Authors: Pubudu K. Hitigala Kaluarachchilage, Champike Attanayake, Sasith Rajasooriya, Chris P. Tsokos

Abstract:

Operating system (OS) security is a key component of computer security. Assessing and improving OSs strength to resist against vulnerabilities and attacks is a mandatory requirement given the rate of new vulnerabilities discovered and attacks occurring. Frequency and the number of different kinds of vulnerabilities found in an OS can be considered an index of its information security level. In the present study five mostly used OSs, Microsoft Windows (windows 7, windows 8 and windows 10), Apple’s Mac and Linux are assessed for their discovered vulnerabilities and the risk associated with each. Each discovered and reported vulnerability has an exploitability score assigned in CVSS score of the national vulnerability database. In this study the risk from vulnerabilities in each of the five Operating Systems is compared. Risk Indexes used are developed based on the Markov model to evaluate the risk of each vulnerability. Statistical methodology and underlying mathematical approach is described. Initially, parametric procedures are conducted and measured. There were, however, violations of some statistical assumptions observed. Therefore the need for non-parametric approaches was recognized. 6838 vulnerabilities recorded were considered in the analysis. According to the risk associated with all the vulnerabilities considered, it was found that there is a statistically significant difference among average risk levels for some operating systems, indicating that according to our method some operating systems have been more risk vulnerable than others given the assumptions and limitations. Relevant test results revealing a statistically significant difference in the Risk levels of different OSs are presented.

Keywords: cybersecurity, Markov chain, non-parametric analysis, vulnerability, operating system

Procedia PDF Downloads 151
3538 Toxic Dyes Removal in Aqueous Solution Using Calcined and Uncalcined Anionic Clay Zn/Al+Fe

Authors: Bessaha Hassiba, Bouraada Mohamed

Abstract:

Layered double hydroxide with Zn/(Al+Fe) molar ratio of 3:1 was synthesized by co-precipitation method and their calcined product was obtained by heating treatment of ZAF-HT at 500°C. The calcined and uncalcined materials were used to remove weak acid dyes: indigo carmine (IC) and green bezanyl-F2B (F2B) in aqueous solution. The synthesized materials were characterized by XRD, SEM, FTIR and TG/DTA analysis confirming the formation of pure layered structure of ZAF-HT, the destruction of the original structure after calcination and the intercalation of the dyes molecules. Moreover, the interlayer distance increases from 7.645 Å in ZAF-HT to 19.102 Å after the dyes sorption. The dose of the adsorbents was chosen 0.5 g/l while the initial concentrations were 250 and 750 mg/l for indigo carmine and green bezanyl-F2B respectively. The sorption experiments were carried out at ambient temperature and without adjusting the initial solution pH (pHi = 6.10 for IC and pHi = 5.01 for F2B). In addition, the maximum adsorption capacities obtained by ZAF-HT and CZAF for both dyes followed the order: CZAF-F2B (1501.4 mg.g-1) > CZAF-IC (617.3 mg.g-1) > ZAF-HT-IC (41.4 mg.g-1) > ZAF-HT-F2B (28.9 mg.g-1). The removal of indigo carmine and green bezanyl-F2B by ZAF-HT was due to the anion exchange and/or the adsorption on the surface. By using the calcined material (CZAF), the removal of the dyes was based on a particular property, called ‘memory effect’. CZAF recover the pristine structure in the presence anionic molecules such as acid dyes where they occupy the interlayer space. The sorption process was spontaneous in nature and followed pseudo-second-order. The isotherms showed that the removal of IC and F2B by ZAF-HT and CZAF were consistent with Langmiur model.

Keywords: acid dyes, adsorption, calcination, layered double hydroxides

Procedia PDF Downloads 184
3537 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 49
3536 Sensitivity Based Robust Optimization Using 9 Level Orthogonal Array and Stepwise Regression

Authors: K. K. Lee, H. W. Han, H. L. Kang, T. A. Kim, S. H. Han

Abstract:

For the robust optimization of the manufacturing product design, there are design objectives that must be achieved, such as a minimization of the mean and standard deviation in objective functions within the required sensitivity constraints. The authors utilized the sensitivity of objective functions and constraints with respect to the effective design variables to reduce the computational burden associated with the evaluation of the probabilities. The individual mean and sensitivity values could be estimated easily by using the 9 level orthogonal array based response surface models optimized by the stepwise regression. The present study evaluates a proposed procedure from the robust optimization of rubber domes that are commonly used for keyboard switching, by using the 9 level orthogonal array and stepwise regression along with a desirability function. In addition, a new robust optimization process, i.e., the I2GEO (Identify, Integrate, Generate, Explore and Optimize), was proposed on the basis of the robust optimization in rubber domes. The optimized results from the response surface models and the estimated results by using the finite element analysis were consistent within a small margin of error. The standard deviation of objective function is decreasing 54.17% with suggested sensitivity based robust optimization. (Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2017, S2455569)

Keywords: objective function, orthogonal array, response surface model, robust optimization, stepwise regression

Procedia PDF Downloads 258
3535 Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area

Authors: Soumia Merat, Lynda Djerbal, Ramdane Bahar, Mohammed Amin Benbouras

Abstract:

Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values.

Keywords: empirical models, RMSE, shear wave velocity, standard penetration test

Procedia PDF Downloads 305
3534 Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field

Authors: Neda Azimi, Masoud Rahimi, Faezeh Mohammadi

Abstract:

Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices.

Keywords: CFD modeling, hydrodynamic, micromixer, ferrofluid, mixing

Procedia PDF Downloads 165
3533 Evaluation and Selection of Drilling Technologies: An Application of Portfolio Analysis Matrix in South Azadgan Oilfield

Authors: M. Maleki Sadabad, A. Pointing, N. Marashi

Abstract:

With respect to the role and increasing importance of technology for countries development, in recent decades technology development has paid attention in a systematic form. Nowadays the markets face with highly complicated and competitive conditions in foreign markets, therefore, evaluation and selection of technology effectiveness and also formulating technology strategy have changed into a vital subject for some organizations. The study introduces the standards of empowerment evaluation and technology attractiveness especially strategic technologies which explain the way of technology evaluation, selection and finally formulating suitable technology strategy in the field of drilling in South Azadegan oil field. The study firstly identifies the key challenges of oil fields in order to evaluate the technologies in field of drilling in South Azadegan oil field through an interview with the experts of industry and then they have been prioritised. In the following, the existing and new technologies were identified to solve the challenges of South Azadegan oil field. In order to explore the ability, availability, and attractiveness of every technology, a questionnaire based on Julie indices has been designed and distributed among the industry elites. After determining the score of ability, availability and attractiveness, every technology which has been obtained by the average of expert’s ideas, the technology package has been introduced by Morin’s model. The matrix includes four areas which will follow the especial strategy. Finally, by analysing the above matrix, the technology options have been suggested in order to select and invest.

Keywords: technology, technology identification, drilling technologies, technology capability

Procedia PDF Downloads 106
3532 Two Lessons Learnt in Defining Intersections and Interfaces in Numerical Modeling with Plaxis

Authors: Mahdi Sadeghian, Somaye Sadeghian, Reza Dinarvand

Abstract:

This paper is going to discuss two issues encountered in using PLAXIS. Both issues were monitored during application of PLAXIS to estimate the excavation-induced displacement. Column Soil Mixing (CSM) was applied to stabilise the excavation. It was understood that the estimated excavation induced deformation at the top of the CSM blocks highly depends on the material type defining pavement material adjacent to the CSM blocks. Cohesive material for pavement will result in the unrealistic connection between pavement and CSM even by defining an interface element. To find the most realistic approach, the interface defined in three different manners (1) no interface elements were applied (2) a non-cohesive soil layer was defined between pavement and CSM block to represent the friction between these materials (3) built-in interface elements in PLAXIS was used to define the boundary between the pavement and the CSM block. The result showed that the option 2 would result in more realistic results. The second issue was in the modelling of the contact line between the CSM block and an inclined layer underneath. The analysis result showed that the excavation-induced deformation highly depends on how the PLAXIS user defines the contact area. It was understood that if the contact area had defined as a point in which CSM block had intersected the layer underneath the estimated lateral displacement of CSM block would be unrealistically lower than the model in which the contact area was defined as a line.

Keywords: PLAXIS, FEM, CSM, Excavation-Induced Deformation

Procedia PDF Downloads 128
3531 The Internet of Things: A Survey of Authentication Mechanisms, and Protocols, for the Shifting Paradigm of Communicating, Entities

Authors: Nazli Hardy

Abstract:

Multidisciplinary application of computer science, interactive database-driven web application, the Internet of Things (IoT) represents a digital ecosystem that has pervasive technological, social, and economic, impact on the human population. It is a long-term technology, and its development is built around the connection of everyday objects, to the Internet. It is estimated that by 2020, with billions of people connected to the Internet, the number of connected devices will exceed 50 billion, and thus IoT represents a paradigm shift in in our current interconnected ecosystem, a communication shift that will unavoidably affect people, businesses, consumers, clients, employees. By nature, in order to provide a cohesive and integrated service, connected devices need to collect, aggregate, store, mine, process personal and personalized data on individuals and corporations in a variety of contexts and environments. A significant factor in this paradigm shift is the necessity for secure and appropriate transmission, processing and storage of the data. Thus, while benefits of the applications appear to be boundless, these same opportunities are bounded by concerns such as trust, privacy, security, loss of control, and related issues. This poster and presentation look at a multi-factor authentication (MFA) mechanisms that need to change from the login-password tuple to an Identity and Access Management (IAM) model, to the more cohesive to Identity Relationship Management (IRM) standard. It also compares and contrasts messaging protocols that are appropriate for the IoT ecosystem.

Keywords: Internet of Things (IoT), authentication, protocols, survey

Procedia PDF Downloads 268
3530 The Relationship between Characteristics of Nurses and Organizational Commitment of Nurses in Geriatric Intermediate Care Facilities in Japan

Authors: Chiharu Miyata, Hidenori Arai

Abstract:

Background: The quality of care in geriatric intermediate facilities (GIFs) in Japan is not in a satisfied level. To improve it, it is crucial to reconsider nurses’ professionalism. Our goal is to create an organizational system that allows nurses to succeed professionally. To do this, we must first discuss the relationship between nurses’ characteristics and the organization. Objectives: The aim of the present study was to determine the extent to which demographic and work-related factors are related to organizational commitment among nurses in GIFs. Method: A quantitative, cross-sectional method was adopted, using a self-completion questionnaire survey. The questionnaires consisted of 49 items for job satisfaction, the three-dimensional commitment model of organizational commitment and the background information of respondents. Results: A total of 1,189 nurses participated. Of those, 91% (n=1084) were women, and mean age was 48.2 years. Most participants were staff nurses (n=791; 66%). Significant differences in 'affective commitment' (AC) scores were found for age (p < .001), overall work experience (p < .001), and work status (p < .001). For work experience in the current facility, significant differences were found in all organizational commitment scores (p < .001). The group with high job satisfaction scored significantly higher in all types of organizational commitment (p < 0.001). Conclusions: These results led to a conclusion that understanding the expectations of nurses at the workplace to adapt with the organization, and creating a work environment that clarifies contents of tasks, especially allowing for nurses to feel significance and achievement with tasks, would increase AC.

Keywords: geriatric intermediate care facilities, geriatric nursing, job satisfaction, organizational commitment

Procedia PDF Downloads 122
3529 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit

Authors: Prabal Singh Verma

Abstract:

Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments.

Keywords: nonlinear plasma waves, longitudinal, wave-breaking, wake-field acceleration

Procedia PDF Downloads 342
3528 Trehalose-Based Nanocarriers for Alleviation of Inflammation in Colitis

Authors: Wessam H. Abd-Elsalam, Mona M. Saber, Samar M. Abouelatta

Abstract:

Non-steroidal anti-inflammatory drugs (NSAIDs) are considered a double edged sword in inflammatory bowel diseases (IBDs). Some studies reported their advantageous effect in decreasing inflammation, and other studies reported that their use is associated with colitis aggravation. This study aimed to use specifically formulated trehalose-based nano-carriers that targets the colon in an attempt to alleviate inflammation caused by NSAIDs. L-α-phosphatidylcholine (PL), trehalose, and transcutol were used to prepare the trehalosomes (THs), which were also loaded with Tenoxicam(TXM) as a model NSAID. To optimize the formulation variables, a full 23 factorial design, using Design-Expert® software, was performed. The optimized formulation composed of trehalose: PL at a weight ratio of 1:1, 377.72 mg transcutol, and sonicated for 4 min, possessed a spherical shape with a size of 268.61 nm and EE% of 97.83% and released 70.22% of its drug content over 24 h. The superior protective action of TXM loaded THs compared to TXM suspension and drug-free THs was shown by the inhibition of the inflammatory biomarkers, namely; IL-1ß, IL-6, and TNF-alpha levels, as well as oxidative stress markers, measured as GSH and MDA. Improved histopathology of the colonic tissue in male New Zealand rabbits also confirmed the superiority of the TXM loaded THs compared to the unformulated drug or the drug free nano-carriers. Our findings highlight the prosperous role of THs in colon targeting and its anti-inflammatory characteristics in guarding against possible NSAIDs-driven exacerbation of colitis.

Keywords: inflammatory bowel disease, trehalose, trehalosomes, colon targeting

Procedia PDF Downloads 104
3527 A Discrete Element Method-Based Simulation of Toppling Failure Considering Block Interaction

Authors: Hooman Dabirmanesh, Attila M. Zsaki

Abstract:

The toppling failure mode in a rock mass is considerably different from the most common sliding failure type along an existing or an induced slip plane. Block toppling is observed in a rock mass which consists of both a widely-spaced basal cross-joint set and a closely-spaced discontinuity set dipping into the slope. For this case, failure occurs when the structure cannot bear the tensile portion of bending stress, and the columns or blocks overturn by their own weight. This paper presents a particle-based discrete element model of rock blocks subjected to a toppling failure where geometric conditions and interaction among blocks are investigated. A series of parametric studies have been conducted on particles’ size, arrangement and bond contact among of particles which are made the blocks. Firstly, a numerical investigation on a one-block system was verified. Afterward, a slope consisting of multi-blocks was developed to study toppling failure and interaction forces between blocks. The results show that the formation of blocks, especially between the block and basal plane surface, can change the process of failure. The results also demonstrate that the initial configuration of particles used to form the blocks has a significant role in achieving accurate simulation results. The size of particles and bond contacts have a considerable influence to change the progress of toppling failure.

Keywords: block toppling failure, contact interaction, discrete element, particle size, random generation

Procedia PDF Downloads 148
3526 Assessment of Community Perceptions of Mangrove Ecosystem Services and Their Link to SDGs in Vanga, Kenya

Authors: Samson Obiene, Khamati Shilabukha, Geoffrey Muga, James Kairo

Abstract:

Mangroves play a vital role in the achievement of multiple goals of global sustainable development (SDG’s), particularly SDG SDG 14 (life under water). Their management, however, is faced with several shortcomings arising from inadequate knowledge on the perceptions of their ecosystem services, hence a need to map mangrove goods and services within SDGs while interrogating the disaggregated perceptions. This study therefore aimed at exploring the parities and disparities in attitudes and perceptions of mangrove ecosystem services among community members of Vanga and the link of the ecosystem services (ESs) to specific SDG targets. The study was based at the Kenya-Tanzania transboundary area in Vanga; where a carbon-offset project on mangroves is being up scaled. Mixed methods approach employing surveys, focus group discussions (FGDs) and reviews of secondary data were used in the study. A two stage cluster samplings was used to select the study population and the sample size. FGDs were conducted purposively selecting active participants in mangrove related activities with distinct socio-demographic characteristics. Sampled respondents comprised of males and females of different occupations and age groups. Secondary data review was used to select specific SDG targets against which mangrove ecosystem services identified through a value chain analysis were mapped. In Vanga, 20 ecosystem services were identified and categorized under supporting, cultural and aesthetic, provisioning and regulating services. According to the findings of this study, 63.9% (95% ci 56.6-69.3) perceived of the ESs as very important for economic development, 10.3% (95% ci 0-21.3) viewed them as important for environmental and ecological development while 25.8% (95% ci 2.2-32.8) were not sure of any role they play in development. In the social-economic disaggregation, ecosystem service values were found to vary with the level of interaction with the ecosystem which depended on gender and other social-economic classes within the study area. The youths, low income earners, women and those with low education levels were also identified as the primary beneficiaries of mangrove ecosystem services. The study also found that of the 17 SDGs, mangroves have a potential of influencing the achievement 12, including, SDGs 1, 2, 3, 4, 6, 8 10, 12, 13, 14, 15 and 17 either directly or indirectly. Generally therefore, the local community is aware of the critical importance mangroves for enhanced livelihood and ecological services but challenges in sustainability still occur as a result the diverse values and of the services and the contradicting interests of the different actors around the ecosystem. It is therefore important to consider parities in values and perception to avoid a ‘tragedy of the commons’ while striving to enhance sustainability of the Mangrove ecosystem.

Keywords: sustainable development, community values, socio-demographics, Vanga, mangrove ecosystem services

Procedia PDF Downloads 113
3525 Knowledge of Nature through the Ultimate Methodology of Buddhism and Philosophy of Karmic Consequence to Uproot through the Buddha’s Perspective

Authors: Pushpa Debnath

Abstract:

Buddhism implies the ultimate methodology to obtain the acknowledgment to get out from cycling existence applied by the sutras. The Buddha’s natural methodology is the highest way of cessation from suffering existence. To be out of it, one must know the suffering before having tentativeness. According to the Buddha’s methodology, one can observe every being suffer from chronologically grasping craving. It is because lack of knowledge that the Buddha finds the four noble truths which are the basic states. These are suffering, the origin of suffering, cessation of suffering, and the path leading to the cessation of suffering. The Buddha describes that birth is suffering, aging is suffering, sickness is suffering, death is suffering, association with the unexpected is suffering, separation from the pleasant is suffering, and not receiving what one desires is suffering, In brief, the five aggregates of clinging are suffering. As the five aggregates are form, feeling, perception, mental formation, and consciousness. These are known as the matter that we identify with “You, Me” or “He.” The second truth cause of suffering is craving which has three types: craving for sense pleasures, craving for existence, and craving for non-existence. The third truth is the obliteration of craving, suffering can be eliminated to attain the Nibbana. The fourth truth is the path of liberation is the noble eight-fold path consisting of the right view, right intention, right speech, right action, right livelihood, right effort, right mindfulness, and right concentration. The six senses are the media of the eye, ear, nose, tongue, body, and mind sense faculties relating with the five aggregates and the six senses objects visual objects, sounds, smells, tastes, touch, and mind-objects that are contained by every visible being. The first five internal sense bases are material while the mind is a non-material phenomenon. Contact with the external world maintains by receiving through the six senses; visual objects through the eye, sounds through the ear, smells through the nose, tastes through the tongue, touch through the body, and mind-objects through sense faculties. These are the six senses a living being experiences by craving. Everything is conglomerated with all senses faculties through the natural phenomenon which are earth, water, fire, and air element. In this analysis, it is believed that beings are well adapted to the natural phenomenon. Everybody has fear of life because we have hatred, delusion, and anger which are the primary resources of falling into (Samsara) continuously that is the continuity of the natural way. These are the reasons for the suffering that chronically self-diluting through the threefold way. These are the roots of the entire beings suffering so the Buddha finds the enlightenment to uproot from cycling existence and the understanding of the natural consequence. When one could uproot ignorance, one could able to realize the ultimate happiness of Nirvana. From the craving of ignorance, everything starts to be present to the future which gives us mental agonies in existence.

Keywords: purification, morality, natural phenomenon, analysis, development of mind, observatory, Nirvana

Procedia PDF Downloads 47
3524 Improvement of Students’ Active Experience through the Provision of Foundational Architecture Pedagogy by Virtual Reality Tools

Authors: Mehdi Khakzand, Flora Fakourian

Abstract:

It has been seen in recent years that architects are using virtual modeling to help them visualize their projects. Research has indicated that virtual media, particularly virtual reality, enhances architects' comprehension of design and spatial perception. Creating a communal experience for active learning is an essential component of the design process in architecture pedagogy. It has been particularly challenging to replicate design principles as a critical teaching function, and this is a complex issue that demands comprehension. Nonetheless, the usage of simulation should be studied and limited as appropriate. In conjunction with extensive technology, 3D geometric illustration can bridge the gap between the real and virtual worlds. This research intends to deliver a pedagogical experience in the architecture basics course to improve the architectural design process utilizing virtual reality tools. This tool seeks to tackle current challenges in current ways of architectural illustration by offering building geometry illustration, building information (data from the building information model), and simulation results. These tools were tested over three days in a design workshop with 12 architectural students. This article provided an architectural VR-based course and explored its application in boosting students' active experiences. According to the research, this technology can improve students' cognitive skills from challenging simulations by boosting visual understanding.

Keywords: active experience, architecture pedagogy, virtual reality, spatial perception

Procedia PDF Downloads 41