Search results for: vibration suppression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1013

Search results for: vibration suppression

953 Free Vibration of Functionally Graded Smart Beams Based on the First Order Shear Deformation Theory

Authors: A. R. Nezamabadi, M. Veiskarami

Abstract:

This paper studies free vibration of simply supported functionally graded beams with piezoelectric layers based on the first order shear deformation theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. The governing equation is established. Resulting equation is solved using the Euler's equation. The effects of the constituent volume fractions, the influences of applied voltage on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: mechanical buckling, functionally graded beam, first order shear deformation theory, free vibration

Procedia PDF Downloads 432
952 The Effect of Damper Attachment on Tennis Racket Vibration: A Simulation Study

Authors: Kuangyou B. Cheng

Abstract:

Tennis is among the most popular sports worldwide. During ball-racket impact, substantial vibration transmitted to the hand/arm may be the cause of “tennis elbow”. Although it is common for athletes to attach a “vibration damper” to the spring-bed, the effect remains unclear. To avoid subjective factors and errors in data recording, the effect of damper attachment on racket handle end vibration was investigated with computer simulation. The tennis racket was modeled as a beam with free-free ends (similar to loosely holding the racket). Finite difference method with 40 segments was used to simulate ball-racket impact response. The effect of attaching a damper was modeled as having a segment with increased mass. It was found that the damper has the largest effect when installed at the spring-bed center. However, this is not a practical location due to interference with ball-racket impact. Vibration amplitude changed very slightly when the damper was near the top or bottom of the spring-bed. The damper works only slightly better at the bottom than at the top of the spring-bed. In addition, heavier dampers work better than lighter ones. These simulation results were comparable with experimental recordings in which the selection of damper locations was restricted by ball impact locations. It was concluded that mathematical model simulations were able to objectively investigate the effect of damper attachment on racket vibration. In addition, with very slight difference in grip end vibration amplitude when the damper was attached at the top or bottom of the spring-bed, whether the effect can really be felt by athletes is questionable.

Keywords: finite difference, impact, modeling, vibration amplitude

Procedia PDF Downloads 218
951 Study on Intensity Modulated Non-Contact Optical Fiber Vibration Sensors of Different Configurations

Authors: Dinkar Dantala, Kishore Putha, Padmavathi Manchineelu

Abstract:

Optical fibers are widely used in the measurement of several physical parameters like temperature, pressure, vibrations etc. Measurement of vibrations plays a vital role in machines. In this paper, three fiber optic non-contact vibration sensors were discussed, which are designed based on the principle of light intensity modulation. The Dual plastic optical fiber, Fiber optic fused 1x2 coupler and Fiber optic fused 2x2 coupler vibration sensors are compared based on range of frequency, resolution and sensitivity. It is to conclude that 2x2 coupler configuration shows better response than other two sensors.

Keywords: fiber optic, PMMA, vibration sensor, intensity-modulated

Procedia PDF Downloads 326
950 Epidemiological Study on Prevalence of Bovine Trypanosomosis and Tsetse Fly Density in Some Selected of Pastoral Areas of South Omo Zone

Authors: Tekle Olbamo, Tegegn Tesfaye, Dikaso Unbushe, Belete Jorga

Abstract:

Bovine trypanosomosis is a haemoprotozoan parasitic disease, mostly transmitted by the tsetse fly (Glossina species) and poses significant losses to the livestock industry in pastoral and agro-pastoral areas. Therefore, the current study was aimed to determine the prevalence of bovine trypanosomosis and its vectorial density in some selected tsetse suppression and non-tsetse suppression areas of South Omo Zonefrom December 2018- November 2019. Dark phase contrast buffy coat, hematocrit techniques, and thin blood smear method were used for determination of prevalence and packed cell volume of trypanosomosis infection, respectively. For entomological investigation, 96 NGU traps were deployed (64 traps in tsetse suppression areas, 32 traps in tsetse non-suppression areas) in vector breeding areas. The overall prevalence of bovine trypanosomosis was 11.05% (142/1284), and overall seasonal prevalence of disease was 14.33% (92/642) and 7.78% (50/642) for dry and wet seasons, respectively. There was a statistically significant difference (P <0.05) in disease prevalence between the two seasons. Trypanosomacongolensewas the dominant parasite species; 80% and 71.64%, followed by Trypanosomavivax. Overall mean packed cell volume indicated parasitaemic animals (23.57±3.13) had significantly lower PCV than aparasitaemic animals (27.80±4.95), and animals examined during dry season (26.22±4.37) had lower mean PCV than animals examined during wet season with the significant association. Entomological study result revealed a total of 2.64 F/T/D and 2.03 F/T/D respectively from tsetse suppression areas and tsetse non-suppression areas during dry season and 0.42 F/T/D and 0.56 F/T/D during the wet season. Glossinapallidipes was the only cyclical vectors collected and identified from current study areas along with numerous mechanical vectors of genus Tabanus, Stomoxys, and Haematopota. Therefore integrated and safe control and prevention effort should be engaged to uphold cattle production and productivity in the area.

Keywords: bovine trypanosomiasis, South Omo, tsetse fly density, epidemiological study

Procedia PDF Downloads 119
949 Seismic Resistant Mechanism of Two-by-four Wooden Frame with Vibration Control Device

Authors: Takumi Ito, Kurumi Kurokawa, Dong Hang Wu, Takashi Nagumo, Haruhiko Hirata

Abstract:

The structural system of wooden house by two-by-four method is widely adopted in any countries, and a various type of vibration control system for building structures has been developed on country with frequent earthquake. In this study, a vibration control device called “Scaling Frame” (SF) is suggested, and which is applied to wooden two-by-four method structures. This paper performs the experimental study to investigate the restoring force characteristics of two-by-four with SF device installed. The seismic resistant performance is estimated experimentally, and also the applicability and effectiveness are discussing.

Keywords: two-by-four method, seismic vibration control, horizontally loading test, restoring force characteristics

Procedia PDF Downloads 262
948 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia PDF Downloads 351
947 The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model

Authors: Gürkan Şakar, Fevzi Çakmak Bolat

Abstract:

In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.

Keywords: sandwich structure, free vibration, numeric analysis, 3D model, continuum model

Procedia PDF Downloads 386
946 Design of Neural Predictor for Vibration Analysis of Drilling Machine

Authors: İkbal Eski

Abstract:

This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.

Keywords: artificial neural network, vibration analyses, drilling machine, robust

Procedia PDF Downloads 348
945 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.

Keywords: fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response

Procedia PDF Downloads 284
944 Suppression Subtractive Hybridization Technique for Identification of the Differentially Expressed Genes

Authors: Tuhina-khatun, Mohamed Hanafi Musa, Mohd Rafii Yosup, Wong Mui Yun, Aktar-uz-Zaman, Mahbod Sahebi

Abstract:

Suppression subtractive hybridization (SSH) method is valuable tool for identifying differentially regulated genes in disease specific or tissue specific genes important for cellular growth and differentiation. It is a widely used method for separating DNA molecules that distinguish two closely related DNA samples. SSH is one of the most powerful and popular methods for generating subtracted cDNA or genomic DNA libraries. It is based primarily on a suppression polymerase chain reaction (PCR) technique and combines normalization and subtraction in a solitary procedure. The normalization step equalizes the abundance of DNA fragments within the target population, and the subtraction step excludes sequences that are common to the populations being compared. This dramatically increases the probability of obtaining low-abundance differentially expressed cDNAs or genomic DNA fragments and simplifies analysis of the subtracted library. SSH technique is applicable to many comparative and functional genetic studies for the identification of disease, developmental, tissue specific, or other differentially expressed genes, as well as for the recovery of genomic DNA fragments distinguishing the samples under comparison.

Keywords: suppression subtractive hybridization, differentially expressed genes, disease specific genes, tissue specific genes

Procedia PDF Downloads 394
943 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Sameer Abdali

Abstract:

Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 106
942 Surface Integrity Improvement for Selective Laser Melting (SLM) Additive Manufacturing of C300 Parts Using Ball Burnishing

Authors: Adrian Travieso Disotuar, J. Antonio Travieso Rodriguez, Ramon Jerez Mesa, Montserrat Vilaseca

Abstract:

The effect of the non-vibration-assisted and vibration-assisted ball burnishing on both the surface and mechanical properties of C300 obtained by Selective Laser Melting additive manufacturing technology is studied in this paper. Different vibration amplitudes preloads, and burnishing strategies were tested. A topographical analysis was performed to determine the surface roughness of the different conditions. Besides, micro tensile tests were carried out in situ on Scanning Electron Microscopy to elucidate the post-treatment effects on damaging mechanisms. Experiments show that vibration-assisted ball burnishing significantly enhances mechanical properties compared to the non-vibration-assisted method. Moreover, it was found that the surface roughness was significantly improved with respect to the reference surface.

Keywords: additive manufacturing, ball burnishing, mechanical properties, metals, surface roughness

Procedia PDF Downloads 29
941 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System

Authors: Soltani Amir, Wang Xuan

Abstract:

The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.

Keywords: active control, passive control, viscous dampers, structural control, vibration control, tall building

Procedia PDF Downloads 472
940 An Analysis of the Results of Trial Blasting of Site Development Project in the Volcanic Island

Authors: Dong Wook Lee, Seung Hyun Kim

Abstract:

Trial blasting is conducted to identify the characteristics of the blasting of the applicable ground before production blasting and to investigate various problems posed by blasting. The methods and pattern of production blasting are determined based on an analysis of the results of trial blasting. The bedrock in Jeju Island, South Korea is formed through the volcanic activities unlike the inland areas, composed of porous basalt. Trial blasting showed that the blast vibration frequency of sedimentary and metamorphic rocks in the inland areas is in a high frequency band of about 80 Hz while the blast vibration frequency of Jeju Island is in a low frequency band of 10~25 Hz. The frequency band is analyzed to be low due to the large cycle of blasting pattern as blast vibration passes through the layered structured ground layer where the rock formation and clickers irregularly repeat. In addition, the blast vibration equation derived from trial blasting was R: 0.885, S.E: 0.216 when applying the square root scaled distance (SRSD) relatively suitable for long distance, estimated at the confidence level of 95%.

Keywords: attenuation index, basaltic ground, blast vibration constant, blast vibration equation, clinker layer

Procedia PDF Downloads 247
939 Dynamic Analysis and Vibration Response of Thermoplastic Rolling Elements in a Rotor Bearing System

Authors: Nesrine Gaaliche

Abstract:

This study provides a finite element dynamic model for analyzing rolling bearing system vibration response. The vibration responses of polypropylene bearings with and without defects are studied using FE analysis and compared to experimental data. The viscoelastic behavior of thermoplastic is investigated in this work to evaluate the influence of material flexibility and damping viscosity. The vibrations are detected using 3D dynamic analysis. Peak vibrations are more noticeable in an inner ring defect than in an outer ring defect, according to test data. The performance of thermoplastic bearings is compared to that of metal parts using vibration signals. Both the test and numerical results show that Polypropylene bearings exhibit less vibration than steel counterparts. Unlike bearings made from metal, polypropylene bearings absorb vibrations and handle shaft misalignments. Following validation of the overall vibration spectrum data, Von Mises stresses inside the rings are assessed under high loads. Stress is significantly high under the balls, according to the simulation findings. For the test cases, the computational findings correspond closely to the experimental results.

Keywords: viscoelastic, FE analysis, polypropylene, bearings

Procedia PDF Downloads 64
938 Effect of Compressibility of Brake Friction Materials on Vibration Occurrence

Authors: Mostafa Makrahy, Nouby Ghazaly, Ahmad Moaaz

Abstract:

Brakes are one of the most important safety and performance components in automobiles and airplanes. Development of brakes has mainly focused on increasing braking power and stability. Nowadays, brake noise, vibration and harshness (NVH) together with brake dust emission and pad life are very important to vehicle drivers. The main objective of this research is to define the relationship between compressibility of friction materials and their tendency to generate vibration. An experimental study of the friction-induced vibration obtained by the disc brake system of a passenger car is conducted. Three commercial brake pad materials from different manufacturers are tested and evaluated under various brake conditions against cast iron disc brake. First of all, compressibility test for the brake friction material are measured for each pad. Then, brake dynamometer is used to simulate and reproduce actual vehicle braking conditions. Finally, a comparison between the three pad specimens is conducted. The results showed that compressibility have a very significant effect on reduction the vibration occurrence.

Keywords: automotive brake, friction material, brake dynamometer, compressibility test

Procedia PDF Downloads 200
937 Interaction of Cucurbitacin-Containing Phytonematicides and Biocontrol Agents on Cultivated Tomato Plants and Nematode Numbers

Authors: Jacqueline T. Madaure, Phatu W. Mashela

Abstract:

Interactive effects of cucurbitacin-containing phytonematicides and biocontrol agents on growth and nematode suppression on tomato (Solanum lycopersicum) had not been documented. The objective of this study was to determine the interactive effects of Nemafric-BL phytonematicide, Trichoderma harzianum and Steinernema feltiae on growth of tomato plants and suppression of root-knot (Meloidogyne species) nematodes. A 2x2x2 trial was conducted using tomato cv. ‘HTX’ on a field infested with Meloidogyne species. The treatments were applied at commercial rates. At 56 days after treatments, interactions were significant (P ≤ 0.05) for selected plant variables, without significant interactions on nematode variables. In conclusion, results of the current study did not support the combination of the test products for nematode suppression, except that some combinations improved plant growth.

Keywords: cucumis africanus, cucurbitacin b, ethnobotanicals, entomopathogenic nematodes, natural enemies, plant extracts

Procedia PDF Downloads 158
936 Assessment of Influence of Short-Lasting Whole-Body Vibration on the Proprioception of Lower Limbs

Authors: Sebastian Wójtowicz, Anna Mosiołek, Anna Słupik, Zbigniew Wroński, Dariusz Białoszewski

Abstract:

Introduction: In whole-body vibration (WBV) high-frequency mechanical stimuli is generated by a vibration plate and is transferred through bone, muscle and connective tissues to the whole body. The research has shown that the implementation of a vibration plate training over a long period of time leads to improvement of neuromuscular facilitation, especially in afferent neural pathways, which are responsible for the conduction of vibration and proprioceptive stimuli, muscle function, balance, and proprioception. The vibration stimulus is suggested to briefly inhibit the conduction of afferent signals from proprioceptors and may hinder the maintenance of body balance. The purpose of this study was to evaluate the result of a single set of exercises connected with whole-body vibration on the proprioception. Material and Methods: The study enrolled 60 people aged 19-24 years. These individuals were divided into a test group (group A) and a control group (group B). Both groups consisted of 30 persons and performed the same set of exercises on a vibration plate. The following vibration parameters: frequency of 20Hz and amplitude of 3mm, were used in the group A. The vibration plate was turned off while the control group did their exercises. All participants performed six dynamic 30-seconds-long exercises with a 60-second resting period between them. Large muscle groups of the trunk, pelvis, and lower limbs were involved while taking the exercises. The results were measured before and immediately after the exercises. The proprioception of lower limbs was measured in a closed kinematic chain using a Humac 360®. Participants were instructed to perform three squats with biofeedback in a defined range of motion. Then they did three squats without biofeedback which were measured. The final result was the average of three measurements. Statistical analysis was performed using Statistica 10.0 PL software. Results: There were no significant differences between the groups, both before and after the exercise (p > 0.05). The proprioception did not change in both the group A and the group B. Conclusions: 1. Deterioration in proprioception was not observed immediately after the vibration stimulus. This suggests that vibration-induced blockage of proprioceptive stimuli conduction can only have a short-lasting effect occurring only in the presence of the vibration stimulus. 2. Short-term use of vibration seems to be safe for patients with proprioceptive impairment due to the fact that the treatment does not decrease proprioception. 3. There is a need for supplementing the results with evaluation of proprioception while vibration stimuli are being applied. Moreover, the effects of vibration parameters used in the exercises should be evaluated.

Keywords: joint position sense, proprioception, squat, whole body vibration

Procedia PDF Downloads 424
935 Theoretical Investigation on the Dynamic Characteristics of One Degree of Freedom Vibration System Equipped with Inerter of Variable Inertance

Authors: Barenten Suciu, Yoshiki Tsuji

Abstract:

In this paper, a theoretical investigation on the dynamic characteristics of one degree of freedom vibration system equipped with inerter of variable inertance, is presented. Differential equation of movement was solved under proper initial conditions in the case of free undamped/damped vibration, considered in the absence/presence of the inerter in the mechanical system. Influence of inertance on the amplitude of vibration, phase angle, natural frequency, damping ratio, and logarithmic decrement was clarified. It was mainly found that the inerter decreases the natural frequency of the undamped system and also of the damped system if the damping ratio is below 0.707. On the other hand, the inerter increases the natural frequency of the damped system if the damping ratio exceeds 0.707. Results obtained in this work are useful for the adequate design of inerters.

Keywords: damping, frequency control, inerter, one degree of freedom vibration system, parallel connection, variable inertance

Procedia PDF Downloads 284
934 Vertical Vibration Mitigation along Railway Lines

Authors: Jürgen Keil, Frank Walther

Abstract:

This article presents two innovative solutions for vertical vibration mitigation barriers including experimental and numerical investigations on the completed barriers. There is a continuing growth of exposure to noise and vibration in people´s daily lives due to the quest for more mobility and flexibility. In previous times neglected, immissions caused by vibrations can lead, for example, to secondary noise or damage in the adjacent buildings. Also people can feel very affected by vibrations. But unlike in new construction, in existing infrastructure and buildings action can be taken almost only on the transmission path of those vibrations. In the following two solutions were shown how vibrations on the transmission path can be mitigated. These are the jet grouting method and a new installation method (patent pending) by means of a prefabricated hollow box which is filled with vibration reducing mats and driven down to depth, are presented. The essential results of the numerical and experimental investigations on the completed wave barriers are included as well. This article is based on the results of a field test with the participation of Keller Holding, which was executed in the context of the European research project RIVAS (Railway Induced Vibration Abatement Solutions), and on a thesis done at the Technical University of Dresden with the involvement of BAUGRUND DRESDEN Ingenieurgesellschaft mbH and the Keller Holding GmbH.

Keywords: jet grouting, rail way lines, vertical vibration mitigation, vibration reducing mats

Procedia PDF Downloads 366
933 Comparison of Whole-Body Vibration and Plyometric Exercises on Explosive Power in Non-Athlete Girl Students

Authors: Fereshteh Zarei, Mahdi Kohandel

Abstract:

The aim of this study was investigate and compare plyometric and vibration exercises on muscle explosive power in non-athlete female students. For this purpose, 45 female students from non-athletes selected target then divided in to the three groups, two experimental and one control groups. From all groups were getting pre-tested. Experimental A did whole-body vibration exercises involved standing on one of machine vibration with frequency 30 Hz, amplitude 10 mm and in 5 different postures. Training for each position was 40 seconds with 60 seconds rest between it, and each season 5 seconds was added to duration of each body condition, until time up to 2 minutes for each postures. Exercises were done three times a week for 2 month. Experimental group B did plyometric exercises that include jumping, such as horizontal, vertical, and skipping .They included 10 times repeat for 5 set in each season. Intensity with increasing repetitions and sets were added. At this time, asked from control group that keep a daily activity and avoided strength training, explosive power and. after do exercises by groups we measured factors again. One-way analysis of variance and paired t statistical methods were used to analyze the data. There was significant difference in the amount of explosive power between the control and vibration groups (p=0/048) there was significant difference between the control and plyometric groups (019/0 = p). But between vibration and plyometric groups didn't observe significant difference in the amount of explosive power.

Keywords: vibration, plyometric, exercises, explosive power, non-athlete

Procedia PDF Downloads 413
932 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 396
931 Acoustic Induced Vibration Response Analysis of Honeycomb Panel

Authors: Po-Yuan Tung, Jen-Chueh Kuo, Chia-Ray Chen, Chien-Hsing Li, Kuo-Liang Pan

Abstract:

The main-body structure of satellite is mainly constructed by lightweight material, it should be able to withstand certain vibration load during launches. Since various kinds of change possibility in the space, it is an extremely important work to study the random vibration response of satellite structure. This paper based on the reciprocity relationship between sound and structure response and it will try to evaluate the dynamic response of satellite main body under random acoustic load excitation. This paper will study the technical process and verify the feasibility of sonic-borne vibration analysis. One simple plate exposed to the uniform acoustic field is utilized to take some important parameters and to validate the acoustics field model of the reverberation chamber. Then import both structure and acoustic field chamber models into the vibro-acoustic coupling analysis software to predict the structure response. During the modeling process, experiment verification is performed to make sure the quality of numerical models. Finally, the surface vibration level can be calculated through the modal participation factor, and the analysis results are presented in PSD spectrum.

Keywords: vibration, acoustic, modal, honeycomb panel

Procedia PDF Downloads 519
930 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates

Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali

Abstract:

In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.

Keywords: non-linear vibrations, annular plates, large amplitudes, functionally graded material

Procedia PDF Downloads 328
929 Optimization of Passive Vibration Damping of Space Structures

Authors: Emad Askar, Eldesoky Elsoaly, Mohamed Kamel, Hisham Kamel

Abstract:

The objective of this article is to improve the passive vibration damping of solar array (SA) used in space structures, by the effective application of numerical optimization. A case study of a SA is used for demonstration. A finite element (FE) model was created and verified by experimental testing. Optimization was then conducted by implementing the FE model with the genetic algorithm, to find the optimal placement of aluminum circular patches, to suppress the first two bending mode shapes. The results were verified using experimental testing. Finally, a parametric study was conducted using the FE model where patch locations, material type, and shape were varied one at a time, and the results were compared with the optimal ones. The results clearly show that through the proper application of FE modeling and numerical optimization, passive vibration damping of space structures has been successfully achieved.

Keywords: damping optimization, genetic algorithm optimization, passive vibration damping, solar array vibration damping

Procedia PDF Downloads 413
928 A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness

Authors: Thanh-Phong Dao, Shyh-Chour Huang

Abstract:

This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.

Keywords: vibration isolator, quasi-zero stiffness, flexure-based spring mechanisms, compliant mechanism

Procedia PDF Downloads 425
927 Large Amplitude Vibration of Sandwich Beam

Authors: Youssef Abdelli, Rachid Nasri

Abstract:

The large amplitude free vibration analysis of three-layered symmetric sandwich beams is carried out using two different approaches. The governing nonlinear partial differential equations of motion in free natural vibration are derived using Hamilton's principle. The formulation leads to two nonlinear partial differential equations that are coupled both in axial and binding deformations. In the first approach, the method of multiple scales is applied directly to the governing equation that is a nonlinear partial differential equation. In the second approach, we discretize the governing equation by using Galerkin's procedure and then apply the shooting method to the obtained ordinary differential equations. In order to check the validity of the solutions obtained by the two approaches, they are compared with the solutions obtained by two approaches; they are compared with the solutions obtained numerically by the finite difference method.

Keywords: finite difference method, large amplitude vibration, multiple scales, nonlinear vibration

Procedia PDF Downloads 422
926 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis

Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim

Abstract:

This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.

Keywords: actuator, piezoelectric, performance, unimorph

Procedia PDF Downloads 435
925 Vertical and Lateral Vibration Analysis of Conventional Elevator

Authors: Mohammadreza Saviz, Sina Najafian

Abstract:

This paper presents an analytical study of vibration moving elevator and shows the elevator 2D dynamic model to evaluate the vertical and lateral motion. Most elevators applied to tall buildings include compensating ropes to satisfy the balanced rope tension between the car and the counterweight. The elasticity of these ropes and springs of sets that connect cabin to ropes make the elevator car to vibrate. A two-dimensional model is derived to calculate vibrations and displacements. The simulation results were validated by the results of similar works.

Keywords: elevator, vibration, simulation, analytical solution, 2D modeling

Procedia PDF Downloads 264
924 Modal Analysis of a Cantilever Beam Using an Inexpensive Smartphone Camera: Motion Magnification Technique

Authors: Hasan Hassoun, Jaafar Hallal, Denis Duhamel, Mohammad Hammoud, Ali Hage Diab

Abstract:

This paper aims to prove the accuracy of an inexpensive smartphone camera as a non-contact vibration sensor to recover the vibration modes of a vibrating structure such as a cantilever beam. A video of a vibrating beam is filmed using a smartphone camera and then processed by the motion magnification technique. Based on this method, the first two natural frequencies and their associated mode shapes are estimated experimentally and compared to the analytical ones. Results show a relative error of less than 4% between the experimental and analytical approaches for the first two natural frequencies of the beam. Also, for the first two-mode shapes, a Modal Assurance Criterion (MAC) value of above 0.9 between the two approaches is obtained. This slight error between the different techniques ensures the viability of a cheap smartphone camera as a non-contact vibration sensor, particularly for structures vibrating at relatively low natural frequencies.

Keywords: modal analysis, motion magnification, smartphone camera, structural vibration, vibration modes

Procedia PDF Downloads 108