Search results for: velocity profiles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2515

Search results for: velocity profiles

2365 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 404
2364 Earthquake Relocations and Constraints on the Lateral Velocity Variations along the Gulf of Suez, Using the Modified Joint Hypocenter Method Determination

Authors: Abu Bakr Ahmed Shater

Abstract:

Hypocenters of 250 earthquakes recorded by more than 5 stations from the Egyptian seismic network around the Gulf of Suez were relocated and the seismic stations correction for the P-wave is estimated, using the modified joint hypocenter method determination. Five stations TR1, SHR, GRB, ZAF and ZET have minus signs in the station P-wave travel time corrections and their values are -0.235, -0.366, -0.288, -0.366 and -0.058, respectively. It is possible to assume that, the underground model in this area has a particular characteristic of high velocity structure in which the other stations TR2, RDS, SUZ, HRG and ZNM have positive signs and their values are 0.024, 0.187, 0.314, 0.645 and 0.145, respectively. It is possible to assume that, the underground model in this area has particular characteristic of low velocity structure. The hypocenteral location determined by the Modified joint hypocenter method is more precise than those determined by the other routine work program. This method simultaneously solves the earthquake locations and station corrections. The station corrections reflect, not only the different crustal conditions in the vicinity of the stations, but also the difference between the actual and modeled seismic velocities along each of the earthquake - station ray paths. The stations correction obtained is correlated with the major surface geological features in the study area. As a result of the relocation, the low velocity area appears in the northeastern and southwestern sides of the Gulf of Suez, while the southeastern and northwestern parts are of high velocity area.

Keywords: gulf of Suez, seismicity, relocation of hypocenter, joint hypocenter determination

Procedia PDF Downloads 319
2363 Classification of Impact Damages with Respect of Damage Tolerance Design Approach and Airworthiness Requirements

Authors: T. Mrna, R. Doubrava

Abstract:

This paper describes airworthiness requirements with respect damage tolerance. Damage tolerance determines the amount and magnitude of damage on parts of the airplane. Airworthiness requirements determine the amount of damage that can still be in flight capable of the condition. Component damage can be defined as barely visible impact damage, visible impact damage or clear visible impact damage. Damage is also distributed it according to the velocity. It is divided into low or high velocity impact damage. The severity of damage to the part of airplane divides the airworthiness requirements into several categories according to severity. Airworthiness requirements are determined by type airplane. All types of airplane do not have the same conditions for airworthiness requirements. This knowledge is important for designing and operating an airplane.

Keywords: airworthiness requirements, composite, damage tolerance, low and high velocity impact

Procedia PDF Downloads 530
2362 Bifurcations of the Rotations in the Thermocapillary Flows

Authors: V. Batishchev, V. Getman

Abstract:

We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.

Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer

Procedia PDF Downloads 311
2361 The Contribution of Density Fluctuations in Ultrasound Scattering in Cancellous Bone

Authors: A. Elsariti, T. Evans

Abstract:

An understanding of the interaction between acoustic waves and cancellous bone is needed in order to realize the full clinical potential of ultrasonic bone measurements. Scattering is likely to be of central importance but has received little attention to date. Few theoretical approaches have been described to explain scattering of ultrasound from bone. In this study, a scattering model based on velocity and density fluctuations in a binary mixture (marrow fat and cortical matrix) was used to estimate the ultrasonic attenuation in cancellous bone as a function of volume fraction. Predicted attenuation and backscatter coefficient were obtained for a range of porosities and scatterer size. At 600 kHZ and for different scatterer size the effect of velocity and density fluctuations in the predicted attenuation was approximately 60% higher than velocity fluctuations.

Keywords: ultrasound scattering, sound speed, density fluctuations, attenuation coefficient

Procedia PDF Downloads 289
2360 The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient

Procedia PDF Downloads 89
2359 Numerical Investigation of a Slightly Oblique Round Jet Flowing into a Uniform Counterflow Stream

Authors: Amani Amamou, Sabra Habli, Nejla Mahjoub Saïd, Philippe Bournot, Georges Le Palec

Abstract:

A counterflowing jet is a particular configuration of turbulent jets issuing into a moving ambient which has not carried much attention in literature compared with jet in a coflow or in a crossflow. This is due to the marked instability of the jet in a counterflow coupled with experimental and theoretical difficulties related to the flow inversion phenomenon. Nevertheless, jets in a counterflow are encountered in many engineering applications which required enhanced mixing as combustion, process and environmental engineering. In this work, we propose to investigate a round turbulent jet flowing into a uniform counterflow stream through a numerical approach. A hydrodynamic and thermal study of a slightly oblique round jets issuing into a uniform counterflow stream is carried out for different jet-to-counterflow velocity ratios ranging between 3.1 and 15. It is found that even a slight inclination of the jet in the vertical direction of the flow affects the structure and the velocity field of the counterflowing jet. In addition, the evolution of passive scalar temperature and pertinent length scales are presented at various velocity ratios, confirming that the flow is sensitive to directional perturbations.

Keywords: jet, counterflow, velocity, temperature, jet inclination

Procedia PDF Downloads 230
2358 Computational Fluid Dynamics of a Bubbling Fluidized Bed in Wood Pellets

Authors: Opeyemi Fadipe, Seong Lee, Guangming Chen, Steve Efe

Abstract:

In comparison to conventional combustion technologies, fluidized bed combustion has several advantages, such as superior heat transfer characteristics due to homogeneous particle mixing, lower temperature needs, nearly isothermal process conditions, and the ability to operate continuously. Computational fluid dynamics (CFD) can help anticipate the intricate combustion process and the hydrodynamics of a fluidized bed thoroughly by using CFD techniques. Bubbling Fluidized bed was model using the Eulerian-Eulerian model, including the kinetic theory of the flow. The model was validated by comparing it with other simulation of the fluidized bed. The effects of operational gas velocity, volume fraction, and feed rate were also investigated numerically. A higher gas velocity and feed rate cause an increase in fluidization of the bed.

Keywords: fluidized bed, operational gas velocity, volume fraction, computational fluid dynamics

Procedia PDF Downloads 44
2357 Experimental Study on Using the Aluminum Sacrificial Anode as a Cathodic Protection for Marine Structures

Authors: A. Radwan, A. Elbatran, A. Mehanna, M. Shehadeh

Abstract:

The corrosion is natural chemical phenomenon that is applied in many engineering structures. Hence, it is one of the important topics to study in the engineering research. Ship and offshore structures are most exposed to corrosion due to the presence of corrosive medium of air and the seawater. Consequently, investigation of the corrosion behavior and properties over ship and offshore hulls is one of the important topics to study in the marine engineering research. Using sacrificial anode is the most popular solution for protecting marine structures from corrosion. Hence, this research investigates the extent of corrosion between the composite ship model and relative velocity of water, along with the sacrificial aluminum anode consumption and its degree of protection in seawater. In this study, the consumption rate of sacrificial aluminum anode with respect to relative velocity at different Reynold’s numbers was studied experimentally, and it was found that, the degree of cathodic protection represented by the cathode potential at a given distance from the aluminum anode was decreased slightly with increment of the relative velocity.

Keywords: corrosion, Reynold's numbers, sacrificial anode, velocity

Procedia PDF Downloads 519
2356 A Numerical Investigation of Flow Maldistribution in Inlet Header Configuration of Plate Fin Heat Exchanger

Authors: Appasaheb Raul

Abstract:

Numerical analysis of a plate fin heat exchanger accounting for the effect of fluid flow maldistribution on the inlet header configuration of the heat exchanger is investigated. It is found that the flow maldistribution is very significant in normal to the flow direction. Various inlet configuration has been studied for various Reynolds Number. By the study, a modified header configuration is proposed and simulated. The two-dimensional parameters are used to evaluate the flow non-uniformity in the header, global flow maldistribution parameter (Sg), and Velocity Ratio (θ). A series of velocity vectors and streamline graphs at different cross-section are achieved and studied qualitatively with experimental results in the literature. The numerical result indicates that the flow maldistribution is serious in the conventional header while in the improved configuration less maldistribution occurs. The flow maldistribution parameter (Sg) and velocity ratio (θ) is reduced in improved configuration. The vortex decreases compared to that of the conventional configuration so the energy and pressure loss is reduced. The improved header can effectively enhance the efficiency of plate fin heat exchanger and uniformity of flow distribution.

Keywords: global flow maldistribution parameter, Sg, velocity ratio, plate fin heat exchanger, fluent 14.5

Procedia PDF Downloads 475
2355 Application of the Seismic Reflection Survey to an Active Fault Imaging

Authors: Nomin-Erdene Erdenetsogt, Tseedulam Khuut, Batsaikhan Tserenpil, Bayarsaikhan Enkhee

Abstract:

As the framework of 60 years of development of Astronomical and Geophysical science in modern Mongolia, various geophysical methods (electrical tomography, ground-penetrating radar, and high-resolution reflection seismic profiles) were used to image an active fault in-depth range between few decimeters to few tens meters. An active fault was fractured by an earthquake magnitude 7.6 during 1967. After geophysical investigations, trench excavations were done at the sites to expose the fault surfaces. The complex geophysical survey in the Mogod fault, Bulgan region of central Mongolia shows an interpretable reflection arrivals range of < 5 m to 50 m with the potential for increased resolution. Reflection profiles were used to help interpret the significance of neotectonic surface deformation at earthquake active fault. The interpreted profiles show a range of shallow fault structures and provide subsurface evidence with support of paleoseismologic trenching photos, electrical surveys.

Keywords: Mogod fault, geophysics, seismic processing, seismic reflection survey

Procedia PDF Downloads 87
2354 Detailed Microzonation Studies around Denizli, Turkey

Authors: A. Aydin, E. Akyol, N. Soyatik

Abstract:

This study has been presented which is a detailed work of seismic microzonation of the city center. For seismic microzonation area of 225 km2 has been selected as the study area. MASW (Multichannel analysis of surface wave) and seismic refraction methods have been used to generate one-dimensional shear wave velocity profile at 250 locations and two-dimensional profile at 60 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 60 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Denizli and the application and use of these results should be required and enforced by municipal authorities.

Keywords: seismic microzonation, liquefaction, land use management, seismic refraction

Procedia PDF Downloads 239
2353 Prediction of Flow Around a NACA 0015 Profile

Authors: Boukhadia Karima

Abstract:

The fluid mechanics is the study of fluid motion laws and their interaction with solid bodies, this project leads to illustrate this interaction with depth studies and approved by experiments on the wind tunnel TE44, ensuring the efficiency, accuracy and reliability of these tests on a NACA0015 profile. A symmetric NACA0015 was placed in a subsonic wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of the velocity across the vortex trailing downstream from the tip of the wing. The aim of this work is to investigate experimentally the scattered pressure profile in a free airflow and the aerodynamic forces acting on this profile. The addition of around-lateral edge to the wing tip was found to eliminate the secondary vortex near the wing tip, but had little effect on the downstream characteristics of the trailing vortex. The increase in wing lift near the tip because of the presence of the trailing vortex was evident in the surface pressure, but was not captured by circulation-box measurements. The circumferential velocity within the vortex was found to reach free-stream values and produce core rotational speeds. Near the wing, the trailing vortex is asymmetric and contains definite zones where the stream wise velocity both exceeds and falls behind the free-stream value. When referenced to the free stream velocity, the maximum vertical velocity of the vortex is directly dependent on α and is independent of Re. A numerical study was conducted through a CFD code called FLUENT 6.0, and the results are compared with experimental.

Keywords: CFD code, NACA Profile, detachment, angle of incidence, wind tunnel

Procedia PDF Downloads 374
2352 Enhancing Flood Modeling: Unveiling the Role of Hazard Parameters in Building Vulnerability

Authors: Mohammad Shoraka, Raulina Wojtkiewicz, Karthik Ramanathan

Abstract:

Following the devastating summer 2021 floods in Germany, catastrophe modelers realized that hazard parameters, such as flow velocity, flood duration, and debris flow, play a significant role in capturing the overall damage potential of such events. Accounting for the location-specific static depth as the only hazard intensity metric may lead to a substantial underestimation of the vulnerability of building stock and, eventually, the loss potential of such catastrophic events. As the flow velocity increases, the hydrodynamic forces acting on various building components are amplified. Longer flood duration leads to water permeating porous components, incurring additional cleanup costs that contribute to an overall increase in damage. Debris flow possesses the power to erode extensive sections of buildings, thus substantially augmenting the extent of losses. This paper introduces four flow velocity classes, ranging from no flow velocity to major velocity, along with two flood duration classes: short and long, in estimating the vulnerability of the building stock. Additionally, the study examines the impact of the presence of debris flow and its role in exacerbating flood damage. The paper delves into the effects of each of these parameters on building component damageability and their collective impact on the overall building vulnerability.

Keywords: catastrophe modeling, building vulnerability, hazard parameters, component damage function

Procedia PDF Downloads 22
2351 Turbulent Boundary Layer over 3D Sinusoidal Roughness

Authors: Misarah Abdelaziz, L Djenidi, Mergen H. Ghayesh, Rey Chin

Abstract:

Measurements of a turbulent boundary layer over 3D sinusoidal roughness are performed for friction Reynolds numbers ranging from 650 < Reτ < 2700. This surface was fabricated by a Multicam CNC Router machine of an acrylic sheet to have an amplitude of k/2 = 0.8 mm and an equal wavelength of 8k in both streamwise and spanwise directions, a 0.6 mm stepover and 12 mm ball nose cutter was used. Single hotwire anemometry measurements are done at one location x=1.5 m downstream at different freestream velocities under zero-pressure gradient conditions. As expected, the roughness causes a downward shift on the wall-unit normalised streamwise mean velocity profile when compared to the smooth wall profile. The shift is increasing with increasing Reτ, 1.8 < ∆U+ < 6.2. The coefficient of friction is almost constant at all cases Cf = 0.0042 ± 0.0002. The results show a gradual reduction in the inner peak of profiles with increasing Reτ until fully destruction at Reτ of 2700.

Keywords: hotwire, roughness, TBL, ZPG

Procedia PDF Downloads 173
2350 Study of Natural Convection in Storage Tank of LNG

Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed

Abstract:

Heat transfer by natural convection in storage tanks for LNG is extremely related to heat gains through the walls with thermal insulation is not perfectly efficient. In this paper, we present the study of natural convection in the unsteady regime for natural gas in aware phase using the fluent software. The gas is just on the surface of the liquid phase. The CFD numerical method used to solve the system of equations is based on the finite volume method. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.

Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas

Procedia PDF Downloads 397
2349 Dynamic Response and Damage Modeling of Glass Fiber Reinforced Epoxy Composite Pipes: Numerical Investigation

Authors: Ammar Maziz, Mostapha Tarfaoui, Said Rechak

Abstract:

The high mechanical performance of composite pipes can be adversely affected by their low resistance to impact loads. Loads in dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, an advanced 3-D finite element (FE) model, based on the use of intralaminar damage models was developed and used to predict damage under low-velocity impact. The performance of the numerical model is validated with the confrontation with the results of experimental tests. The results show that at low impact energy, the damage happens mainly by matrix cracking and delamination. The model capabilities to simulate the low-velocity impact events on the full-scale composite structures were proved.

Keywords: composite materials, low velocity impact, FEA, dynamic behavior, progressive damage modeling

Procedia PDF Downloads 127
2348 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles

Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo

Abstract:

Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.

Keywords: HRRP, NCTI, simulated/synthetic database, SVD

Procedia PDF Downloads 315
2347 An Experimental Study to Investigate the Behaviour of Torque Fluctuation of Crossflow Turbines Operating in an Open Channel

Authors: Sunil Kumar Singal, Manoj Sood, Upendra Bajpai

Abstract:

Instream technology is the upcoming sustainable approach in the hydro sector for energy harnessing. With well-known cross-sections and regulated supply, open channels are the most prominent locations for the installation of hydrokinetic turbines. The fluctuation in generated torque varies with site condition (flow depth and flow velocity), as well as with the type of turbine. The present experimental study aims to investigate the torque/power fluctuations of crossflow hydrokinetic turbines operating at different flow velocities and water depths. The flow velocity is varied from 1.0 m/s to 2.0 m/s. The complete assembly includes an open channel having dimensions of 0.3 m (depth) x 0.71 m (width) x 4.5 m (length), along with a lifting mechanism for varying the channel slope, a digital transducer for monitoring the torque, power, and rpm, a digital handheld water velocity meter for measuring the flow velocity. Further, a time series of torque, power, and rpm is plotted for a duration of 30 minutes showing the continuous operation of the turbine. A comparison of Savonius, Darrieus, and their improved twisted and helical blades is also presented in the study. A correlation has also been developed for assessing the hydropower generation from the installed turbine. The developed correlations will be very useful in the decision-making process for development at a site.

Keywords: darrieus turbine, flow velocity, open channel, savoinus turbine, water depth, hydropower

Procedia PDF Downloads 37
2346 Rising Velocity of a Non-Newtonian Liquids in Capillary Tubes

Authors: Reza Sabbagh, Linda Hasanovich, Aleksey Baldygin, David S. Nobes, Prashant R. Waghmare

Abstract:

The capillary filling process is significantly important to study for numerous applications such as the under filling of the material in electronic packaging or liquid hydrocarbons seepage through porous structure. The approximation of the fluid being Newtonian, i.e., linear relationship between the shear stress and deformation rate cannot be justified in cases where the extent of non-Newtonian behavior of liquid governs the surface driven transport, i.e., capillarity action. In this study, the capillary action of a non-Newtonian fluid is not only analyzed, but also the modified generalized theoretical analysis for the capillary transport is proposed. The commonly observed three regimes: surface forces dominant (travelling air-liquid interface), developing flow (viscous force dominant), and developed regimes (interfacial, inertial and viscous forces are comparable) are identified. The velocity field along each regime is quantified with Newtonian and non-Newtonian fluid in square shaped vertically oriented channel. Theoretical understanding of capillary imbibition process, particularly in the case of Newtonian fluids, is relied on the simplified assumption of a fully developed velocity profile which has been revisited for developing a modified theory for the capillary transport of non-Newtonian fluids. Furthermore, the development of the velocity profile from the entrance regime to the developed regime, for different power law fluids, is also investigated theoretically and experimentally.

Keywords: capillary, non-Newtonian flow, shadowgraphy, rising velocity

Procedia PDF Downloads 166
2345 On Erosion-Corrosion Behavior of Carbon Steel in Oil Sands Slurry: Electrochemical Studies

Authors: M. Deyab, A. Al-Sabagh, S. Keera

Abstract:

The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of carbon steel in oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect.

Keywords: erosion-corrosion, steel, oil sands slurry, polarization

Procedia PDF Downloads 258
2344 Synergistic Erosion–Corrosion Behavior of Petroleum Pipelines at Various Conditions

Authors: M. A. Deyab, A. Al-Sabagh, S. Keera

Abstract:

The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of petroleum pipelines (carbon steel) in the oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in the oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size, and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect.

Keywords: erosion-corrosion, oil sands slurry, polarization, steel

Procedia PDF Downloads 280
2343 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 185
2342 Heat Transfer Enhancement by Turbulent Impinging Jet with Jet's Velocity Field Excitations Using OpenFOAM

Authors: Naseem Uddin

Abstract:

Impinging jets are used in variety of engineering and industrial applications. This paper is based on numerical simulations of heat transfer by turbulent impinging jet with velocity field excitations using different Reynolds Averaged Navier-Stokes Equations models. Also Detached Eddy Simulations are conducted to investigate the differences in the prediction capabilities of these two simulation approaches. In this paper the excited jet is simulated in non-commercial CFD code OpenFOAM with the goal to understand the influence of dynamics of impinging jet on heat transfer. The jet’s frequencies are altered keeping in view the preferred mode of the jet. The Reynolds number based on mean velocity and diameter is 23,000 and jet’s outlet-to-target wall distance is 2. It is found that heat transfer at the target wall can be influenced by judicious selection of amplitude and frequencies.

Keywords: excitation, impinging jet, natural frequency, turbulence models

Procedia PDF Downloads 240
2341 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction

Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat

Abstract:

The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.

Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision

Procedia PDF Downloads 445
2340 Estimation of Shear Wave Velocity from Cone Penetration Test for Structured Busan Clays

Authors: Vinod K. Singh, S. G. Chung

Abstract:

The degree of structuration of Busan clays at the mouth of Nakdong River mouth was highly influenced by the depositional environment, i.e., flow of the river stream, marine regression, and transgression during the sedimentation process. As a result, the geotechnical properties also varies along the depth with change in degree of structuration. Thus, the in-situ tests such as cone penetration test (CPT) could not be used to predict various geotechnical properties properly by using the conventional empirical methods. In this paper, the shear wave velocity (Vs) was measured from the field using the seismic dilatometer. The Vs was also measured in the laboratory from high quality undisturbed and remolded samples using bender element method to evaluate the degree of structuration. The degree of structuration was quantitatively defined by the modulus ratio of undisturbed to remolded soil samples which is found well correlated with the normalized void ratio (e0/eL) where eL is the void ratio at the liquid limit. It is revealed that the empirical method based on laboratory results incorporating e0/eL can predict Vs from the field more accurately. Thereafter, the CPT based empirical method was developed to estimate the shear wave velocity taking the effect of structuration in the consideration. The developed method was found to predict shear wave velocity reasonably for Busan clays.

Keywords: level of structuration, normalized modulus, normalized void ratio, shear wave velocity, site characterization

Procedia PDF Downloads 199
2339 Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability

Authors: Hosein Faramarzpour

Abstract:

This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared.

Keywords: thermophotovoltaic generator, micro combustor, micro power generator, combustion regimes, flame dynamic

Procedia PDF Downloads 44
2338 Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow

Authors: Kirti Singh, Kesheo Prasad

Abstract:

A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region.

Keywords: turbulence, bed roughness, logarithmic law, shear stress correlations, ADV, Reynolds shear stress

Procedia PDF Downloads 46
2337 Exploration for Magnetic Minerals Using Geophysical Logging Techniques in the Northwestern Part of Bangladesh

Authors: Md. Selim Reza, Mohammad Zohir Uddin

Abstract:

Geophysical logging technique was conducted in a borehole in the north-western part of Bangladesh. The main objectives of this study were to identify the subsurface lithology and the presence of magnetic minerals within the basement complex. In this survey, full waveform sonic, magnetic susceptibility and natural gamma logs were conducted up to the depth of 660 m. From sonic log, three distinct velocity zones were observed at depths ranging from 20 m to 81 m, 81m to 360 m and 420 m to 660 m having the average velocity of 1600 m/s indicating unconsolidated sediment, 2500 m/s indicating hard, compact and matured sediments and 6300 m/s indicating basement complex respectively. Some low-velocity zones within the basement were identified as fractures/fissures. Natural gamma log was carried out only in the basement complex. According to magnetic susceptibility log, broadly three important zones were identified which had good agreement with the natural gamma, sonic as well as geological logs. The zone at the depth from 460 m to 470 m had the average susceptibility value of 3445 cgs unit. The average natural gamma value and sonic velocity in this zone are 150 cps and 3000 m/s respectively. The zone at the depth from 571 m to 598 m had the average susceptibility value of 5158 cgs unit with the average natural gamma value and sonic velocity are 160 cps and 6000 m/s respectively. On the other hand, the zone at the depth from 598 m to 620 m had the average susceptibility value of 1998 cgs unit with the average natural gamma value and sonic velocity show 200 cps and 3000 m/s respectively. From the interpretation of geophysical logs the 1st and 3rd zones within the basement complex are considered to be less significant whereas the 2nd zone is described as the most significant for magnetic minerals. Therefore, more drill holes are recommended on the anomalous body to delineate the extent, thickness and reserve of the magnetic body and further research are needed to determine the quality of mineral resources.

Keywords: basement complex, fractures/fissures, geophysical logging, lithology, magnetic susceptibility

Procedia PDF Downloads 245
2336 Experimental Studies of Sigma Thin-Walled Beams Strengthen by CFRP Tapes

Authors: Katarzyna Rzeszut, Ilona Szewczak

Abstract:

The review of selected methods of strengthening of steel structures with carbon fiber reinforced polymer (CFRP) tapes and the analysis of influence of composite materials on the steel thin-walled elements are performed in this paper. The study is also focused to the problem of applying fast and effective strengthening methods of the steel structures made of thin-walled profiles. It is worth noting that the issue of strengthening the thin-walled structures is a very complex, due to inability to perform welded joints in this type of elements and the limited ability to applying mechanical fasteners. Moreover, structures made of thin-walled cross-section demonstrate a high sensitivity to imperfections and tendency to interactive buckling, which may substantially contribute to the reduction of critical load capacity. Due to the lack of commonly used and recognized modern methods of strengthening of thin-walled steel structures, authors performed the experimental studies of thin-walled sigma profiles strengthened with CFRP tapes. The paper presents the experimental stand and the preliminary results of laboratory test concerning the analysis of the effectiveness of the strengthening steel beams made of thin-walled sigma profiles with CFRP tapes. The study includes six beams made of the cold-rolled sigma profiles with height of 140 mm, wall thickness of 2.5 mm, and a length of 3 m, subjected to the uniformly distributed load. Four beams have been strengthened with carbon fiber tape Sika CarboDur S, while the other two were tested without strengthening to obtain reference results. Based on the obtained results, the evaluation of the accuracy of applied composite materials for strengthening of thin-walled structures was performed.

Keywords: CFRP tapes, sigma profiles, steel thin-walled structures, strengthening

Procedia PDF Downloads 270