Search results for: two phase flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8407

Search results for: two phase flow

1327 The Impact of Corporate Governance Mechanisms on Dividend Policy

Authors: Tahar Tayachi, Ahlam Alrehaili

Abstract:

Purpose: The purpose of this paper is to investigate the relationship between the corporate board characteristics and the dividend policy among firms on the Saudi Stock Exchange. Design/Methodology/Approach: This paper uses a sample of 103 nonfinancial firms over a time period of 4 years from 2015 to 2018. To investigate how corporate governance mechanisms such as board independence, the board size, frequency of meetings, and free cash flow impact dividends, the study uses Logit and Tobit models. Findings: This paper finds that board size, board independence, and frequency of board meetings have no influence on a firm’s decision to pay dividends, while board size has a significantly positive impact on the levels of cash dividends paid to investors. This study also finds that the level of free cash flows has a positively significant influence on both the decision to pay dividends and the magnitude of dividend payouts. Research Limitations/Implications: This paper attempts to study the effectiveness of dividend policy among some firms on the Saudi Stock Exchange. Practical Implications: The findings reveal that board characteristics, which represent one of the crucial mechanisms of corporate governance, were found to be complementary to corporate laws and regulations imposed on the Saudi market in 2015. The findings also imply that capital market authorities should revise their corporate regulations and ensure that protection laws are adequate and strong enough to protect the interests of all shareholders. Originality/Value: This paper is among the few studies focusing on dividend policy in Saudi Arabia. Finally, these findings suggest that the improvements in corporate laws in Saudi Arabia led to such an outcome, and it has become prevalent in dividend policy decisions and behaviors of Saudi firms.

Keywords: agency theory, Tobit, corporate governance, dividend payout, Logit

Procedia PDF Downloads 164
1326 A Constructivist and Strategic Approach to School Learning: A Study in a Tunisian Primary School

Authors: Slah Eddine Ben Fadhel

Abstract:

Despite the development of new pedagogic methods, current teaching practices put more emphasis on the learning products than on the processes learners deploy. In school syllabi, for instance, very little time is devoted to both the explanation and analysis of strategies aimed at resolving problems by means of targeting students’ metacognitive procedures. Within a cognitive framework, teaching/learning contexts are conceived of in terms of cognitive, metacognitive and affective activities intended for the treatment of information. During these activities, learners come to develop an array of knowledge and strategies which can be subsumed within an active and constructive process. Through the investigation of strategies and metacognition concepts, the purpose is to reflect upon the modalities at the heart of the learning process and to demonstrate, similarly, the inherent significance of a cognitive approach to learning. The scope of this paper is predicated on a study where the population is a group of 76 primary school pupils who experienced difficulty with learning French. The population was divided into two groups: the first group was submitted during three months to a strategy-based training to learn French. All through this phase, the teachers centred class activities round making learners aware of the strategies the latter deployed and geared them towards appraising the steps these learners had themselves taken by means of a variety of tools, most prominent among which is the logbook. The second group was submitted to the usual learning context with no recourse whatsoever to any strategy-oriented tasks. The results of both groups point out the improvement of linguistic competences in the French language in the case of those pupils who were trained by means of strategic procedures. Furthermore, this improvement was noted in relation with the native language (Arabic), a fact that tends to highlight the importance of the interdisciplinary investigation of (meta-)cognitive strategies. These results show that strategic learning promotes in pupils the development of a better awareness of their own processes, which contributes to improving their general linguistic competences.

Keywords: constructive approach, cognitive strategies, metacognition, learning

Procedia PDF Downloads 184
1325 Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine

Authors: Ulugbek Azimov, Nearchos Stylianidis, Nobuyuki Kawahara, Eiji Tomita

Abstract:

A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a new reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. The chemical kinetics of NOx formation was analyzed for H2/CO/CO2/CH4 syngas mixtures by using counter flow burner and premixed laminar flame speed reactor models. The new mechanism showed a very good agreement with experimental measurements and accurately reproduced the effect of pressure, temperature and equivalence ratio on NOx formation. In order to identify the species important for NOx formation, a sensitivity analysis was conducted for pressures 4 bar, 10 bar and 16 bar and preheat temperature 300 K. The results show that the NOx formation is driven mostly by hydrogen based species while other species, such as N2, CO2 and CH4, have also important effects on combustion. Finally, the new mechanism was used in a multidimensional CFD simulation to predict the combustion of syngas in a micro-pilot-ignited supercharged dual-fuel engine and results were compared with experiments. The mechanism showed the closest prediction of the in-cylinder pressure and the rate of heat release (ROHR).

Keywords: syngas, chemical kinetics mechanism, internal combustion engine, NOx formation

Procedia PDF Downloads 371
1324 Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania

Authors: Y. A. Prada, Fanny Guzman, Rafael Cabanzo, John J. Castillo, Enrique Mejia-Ospino

Abstract:

In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania.

Keywords: biosensing, fluorescence, Leishmania, peptide-gold nanoclusters, proteophosphoglycans

Procedia PDF Downloads 131
1323 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes

Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim

Abstract:

Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.

Keywords: EBFC, glucose, MWCNT, microfluidic

Procedia PDF Downloads 297
1322 Food Poisoning (Salmonellosis) as a Public Health Problem Through Consuming the Meat and Eggs of the Carrier Birds

Authors: M.Younus, M. Athar Khan, Asif Adrees

Abstract:

The present research endeavour was made to investigate the Public Health impact of Salmonellosis through consuming the meat and eggs of the carrier’s birds and to see the prevalence of Salmonella enteritidis and Salmonella typhimurium from poultry feed, poultry meat, and poultry eggs and their role in the chain of transmission of salmonellae to human beings and causing food poisoning. The ultimate objective was to generate data to improve the quality of poultry products and human health awareness. Salmonellosis is one of the most wide spread food borne zoonoses in all the continents of the world. The etiological agents Salmonella enteritidis and Salmonella typhimurium not only produce the disease but during the convalescent phase (after the recovery of disease) remain carriers for indefinite period of time. The carrier state was not only the source of spread of disease with in the poultry but also caused typhoid fever in humans. The chain of transmission started from poultry feed to poultry meat and ultimately to humans as dead end hosts. In this experiment a total number of 200 samples of human stool and blood were collected randomly (100 samples of human stool and 100 samples of human blood) of 100 patients suspected from food poisoning patients from different hospitals of Lahore area for the identification of Salmonella enteritidis and Salmonella typhimurium through PCR method in order to see the public health impact of Salmonellosis through consuming the meat and eggs of the carrier birds. On the average 14 and 10 stool samples were found positive against Salmonella enteritidis and Salmonella typhimurium from each of the 25 patients from each hospital respectively in case of suspected food poisoning patients. Similarly on an average 5% and 6% blood samples were found positive from 25 patients of each hospital respectively. There was a significant difference (P< 0.05) in the sero positivity of stool and blood samples of suspected food poisoning patients as far as Salmonella enteritidis and Salmonella typhimurium was concerned. However there was no significant difference (P<0.05) between the hospitals.

Keywords: salmonella, zoonosis, food, transmission, eggs

Procedia PDF Downloads 636
1321 The Successful in Construction Project via Effectiveness of Project Team

Authors: Zarabizan Zakaria, Hayati Zainal

Abstract:

The construction industry is one of the most important sectors that contribute to the nation’s economy and catalyze towards the growth of other industries. However, some construction projects have not been completed on its stipulated time and duration, scope and budget due to several factors. This problem arises due to the weaknesses of human factors, especially from ineffective leadership quality practiced by project managers and contractors in managing project teams. Therefore, a construction project should impose the element of Project Team. The project team is formed in the implementation of the project which includes the project brief, project scope, customer requirements and provided designs. Many organizations in the construction sector use teams to meet today's global competition and customer expectations, however, team effectiveness evaluation is required. In insuring the construction team is successful and effectiveness, the construction department must encourage, measure, set up, and evaluate or review the effectiveness of project team that was formed. In order to produce a better outcome for a high-end project, an effective and efficient project team is required which also help in increasing overall productivity. The purpose of this study is to determine the role of team effectiveness in the construction project team based on the overall construction project performance. It examines several different factors which related to team effectiveness. It also examines the relationship between team effectiveness factor and project performance aspect. Team Effect Review and Project Performance Review are developed to be used for data collection. Data collected were analyzed using several statistical tests. Results obtained from data analysis are validated using semi-structured interviews. Besides that, a comprehensive survey were developed to assess the way construction project teams in order to maintain its effectiveness throughout the project phase. In order to determine a project successful it has been found that Project Team Leadership is the most important factor. In addition, the definition of team effectiveness in the construction project team is developed based on the perspective of project clients and project team members. The results of this study are expected to provide an idea on the factors that are needed to be focused on improving the team's effectiveness towards project performance aspects. At the same time, the definition of team effectiveness from team members and owner views has been developed in order to provide a better understanding of the word team's effectiveness in construction projects.

Keywords: project team, leadership, construction project, project successful

Procedia PDF Downloads 143
1320 The Effect of Metformin in Combination with Dexamethasone on the CXCR4 Level in Multiple Myeloma Cell Line

Authors: Seyede Sanaz Seyedebrahimi, Shima Rahimi, Shohreh Fakhari, Ali Jalili

Abstract:

Background: CXCR4, as a chemokine receptor, plays well-known roles in various types of cancers. Several studies have been conducted to overcome CXCR4 axis acts in multiple myeloma (MM) pathogenesis and progression. Dexamethasone, a standard treatment for multiple myeloma, has been shown to increase CXCR4 levels in multiple myeloma cell lines. Herein, we focused on the effects of metformin and dexamethasone on CXCR4 at the cellular level and the migration rate of cell lines after exposure to a combination compared to single-agent models. Materials and Method: Multiple myeloma cell lines (U266 and RPMI8226) were cultured with different metformin and dexamethasone concentrations in single-agent and combination models. The simultaneous combination doses were calculated by CompuSyn software. Cell surface and mRNA expression of CXCR4 were determined using flow cytometry and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay, respectively. The Transwell cell migration assay evaluated the migration ability. Results: In concurred with previous studies, our results showed a dexamethasone up-regulation effect on CXCR4 in a dose-dependent manner. Although, the metformin single-agent model could reduce CXCR4 expression of U266 and RPMI8226 in cell surface and mRNA expression level. Moreover, the administration of metformin and dexamethasone simultaneously exerted a higher suppression effect on CXCR4 expression than the metformin single-agent model. The migration rate through the combination model's matrigel membrane was remarkably lower than the metformin and dexamethasone single-agent model. Discussion: According to our findings, the combination of metformin and dexamethasone effectively inhibited dexamethasone-induced CXCR4 expression in multiple myeloma cell lines. As a result, metformin may be counted as an alternative medicine combined with other chemotherapies to combat multiple myeloma. However, more research is required.

Keywords: CXCR4, dexamethasone, metformin, migration, multiple myeloma

Procedia PDF Downloads 120
1319 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 27
1318 “MaxSALIVA”: A Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection and Repair in Head and Neck Cancer

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral and dental health (consequently, general health and well-being). Where it normally bathes the oral cavity and acts as a clearing agent. This becomes more apparent when the amount and quality of salivare significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the fifth most common malignancy worldwide, during which the salivary glands are included within the radiation field or zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely because they become malnourished and experience a significant decrease in their quality of life. Accordingly, the development of an alternative treatment to restore or regenerate damaged salivary gland tissue is eagerly awaited. Likewise, the formulation of a radioprotection modality and early damage prevention strategy is also highly desirable. Objectives: To assess the pre-clinical radio-protective effect as well as the reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned in this experimental work for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs (in solution and powder formats), followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy (revised from our previous 15Gy model) was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: saliva, head and neck cancer, nanotechnology, controlled drug delivery, xerostomia, mucositis, biopolymers, innovation

Procedia PDF Downloads 52
1317 Implementation of Enterprise Asset Management (E-AM) System at Oman Electricity Transmission Company

Authors: Omran Al Balushi, Haitham Al Rawahi

Abstract:

Enterprise Asset Management (eAM) has been implemented across different Generation, Transmission and Distribution subsidiaries in Nama Group companies. As part of Nama group, Oman Electricity Transmission Company (OETC) was the first company to implement this system. It was very important for OETC to implement and maintain such a system to achieve its business objectives and for effective operations, which will also support the delivery of the asset management strategy. Enterprise Asset Management (eAM) addresses the comprehensive asset maintenance requirements of Oman Electricity Transmission Company (OETC). OETC needs to optimize capacity and increase utilization, while lowering unit production. E-AM will enable OETC to adopt this strategy. Implementation of e-AM has improved operation performance with preventive and scheduled maintenance as well as it increased safety. Implementation of e-AM will also enable OETC to create optimal asset management strategy which will increase revenue and decrease cost by effectively monitoring operational data such as maintenance history and operation conditions. CMMS (Computerised Maintenance Management System) is the main software and the back-bone of e-AM system. It is used to provide an improved working practice to properly establish information and data flow related to maintenance activities. Implementation of e-AM system was one of the factors that supported OETC to achieve ISO55001 Certificate on fourth quarter of 2016. Also, full implementation of e-AM system will result in strong integration between CMMS and Geographical Information Systems (GIS) application and it will improve OETC to build a reliable maintenance strategy for all asset classes in its Transmission network. In this paper we will share our experience and knowledge of implementing such a system and how it supported OETC’s management to make decisions. Also we would highlight the challenges and difficulties that we encountered during the implementation of e-AM. Also, we will list some features and advantages of e-AM in asset management, preventive maintenance and maintenance cost management.

Keywords: CMMS, Maintenance Management, Asset Management, Maintenance Strategy

Procedia PDF Downloads 104
1316 Development of Solid Electrolytes Based on Networked Cellulose

Authors: Boor Singh Lalia, Yarjan Abdul Samad, Raed Hashaikeh

Abstract:

Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling.

Keywords: solid polymer electrolyte, ionic conductivity, mechanical properties, lithium ion batteries, cyclic voltammetry

Procedia PDF Downloads 391
1315 Emerging Social Media Presence of International Organisations - Challenges and Opportunities

Authors: Laura Hervai

Abstract:

One of the most significant phenomena of the 2000s was the emergence of social media sites and web 2.0 that revolutionized communication processes. Social networking platforms have fundamentally changed social and political participation of the public, which require organisations in the public and non-profit sector not only to adapt to these new trends but also to actively engage their audiences. Opportunity for interaction, freer expression of opinion and the proliferation of user generated content are major changes brought by web 2.0 technologies. Furthermore, due to the wide penetration of mobile technologies, social media sites are capable of connecting underdeveloped regions to the global flow of information. Taking advantage of these characteristics, organisations have the opportunity to engage much wider audiences, exploit new ways to raise awareness or reach out to regions that are difficult to access. The early adopters of these new communication tools soon recognized the need of developing social media guidelines for their organisations as well as the increased workload that they require. While ten years ago communication officers could handle their organisation’s social media presence, today it is a separate profession. International organisations face several challenges related to their social media presence. Early adopters have contributed to the development of best practices among which the ethics of social media usage still remained problematic. Another challenge for international organisations is to adapt to country-specific social media trends while they have to comply with the requirements of their parent organisation as well. However in the 21st century social media presence can be crucial to the successful operation of international organisations, their importance is still not taken seriously enough. The measurement of the effects and influence of social networking on the organisations’ productivity is an unsolved problem thus further research should focus on this matter. Research methods included primary research of major IGOs’ and NGOs’ social media presence and guidelines along with secondary research of social media statistics and scientific articles in the topic.

Keywords: international organisations, non-profit sector, NGO, social media, social network

Procedia PDF Downloads 270
1314 Harvesting Energy from Lightning Strikes

Authors: Vaishakh Medikeri

Abstract:

Lightning, the marvelous, spectacular and the awesome truth of nature is one of the greatest energy sources left unharnessed since ages. A single lightning bolt of lightning contains energy of about 15 billion joules. This huge amount of energy cannot be harnessed completely but partially. This paper proposes to harness the energy from lightning strikes. Throughout the globe the frequency of lightning is 40-50 flashes per second, totally 1.4 billion flashes per year; all of these flashes carrying an average energy of about 15 billion joules each. When a lightning bolt strikes the ground, tremendous amounts of energy is transferred to earth which propagates in the form of concentric circular energy waves. These waves have a frequency of about 7.83Hz. Harvesting the lightning bolt directly seems impossible, but harvesting the energy waves produced by the lightning is pretty easier. This can be done using a tricoil energy harnesser which is a new device which I have invented. We know that lightning bolt seeks the path which has minimum resistance down to the earth. For this we can make a lightning rod about 100 meters high. Now the lightning rod is attached to the tricoil energy harnesser. The tricoil energy harnesser contains three coils whose centers are collinear and all the coils are parallel to the ground. The first coil has one of its ends connected to the lightning rod and the other end grounded. There is a secondary coil wound on the first coil with one of its end grounded and the other end pointing to the ground and left unconnected and placed a little bit above the ground so that this end of the coil produces more intense currents, hence producing intense energy waves. The first coil produces very high magnetic fields and induces them in the second and third coils. Along with the magnetic fields induced by the first coil, the energy waves which are currents also flow through the second and the third coils. The second and the third coils are connected to a generator which in turn is connected to a capacitor which stores the electrical energy. The first coil is placed in the middle of the second and the third coil. The stored energy can be used for transmission of electricity. This new technique of harnessing the lightning strikes would be most efficient in places with more probability of the lightning strikes. Since we are using a lightning rod sufficiently long, the probability of cloud to ground strikes is increased. If the proposed apparatus is implemented, it would be a great source of pure and clean energy.

Keywords: generator, lightning rod, tricoil energy harnesser, harvesting energy

Procedia PDF Downloads 349
1313 Two-Protein Modified Gold Nanoparticles for Serological Diagnosis of Borreliosis

Authors: Mohammed Alasel, Michael Keusgen

Abstract:

Gold is a noble metal; in its nano-scale level (e.g. spherical nanoparticles), the conduction electrons are triggered to collectively oscillate with a resonant frequency when certain wavelengths of electromagnetic radiation interact with its surface; this phenomenon is known as surface plasmon resonance (SPR). SPR is responsible for giving the gold nanoparticles its intense red color depending mainly on its size, shape and distance between nanoparticles. A decreased distance between gold nanoparticles results in aggregation of them causing a change in color from red to blue. This aggregation enables gold nanoparticles to serve as a sensitive biosensoric indicator. In the proposed work, gold nanoparticles were modified with two proteins: i) Borrelia antigen, variable lipoprotein surface-exposed protein (VlsE), and ii) protein A. VlsE antigen induces a strong antibody response against Lyme disease and can be detected from early to late phase during the disease in humans infected with Borrelia. In addition, it shows low cross-reaction with the other non-pathogenic Borrelia strains. The high specificity of VlsE antigen to anti-Borrelia antibodies, combined simultaneously with the high specificity of protein A to the Fc region of all IgG human antibodies, was utilized to develop a rapid test for serological point of care diagnosis of borreliosis in human serum. Only in the presence of anti-Borrelia antibodies in the serum probe, an aggregation of gold nanoparticles can be observed, which is visible by a concentration-dependent colour shift from red (low IgG) to blue (high IgG). Experiments showed it is clearly possible to distinguish between positive and negative sera samples using a simple suspension of the two-protein modified gold nanoparticles in a very short time (30 minutes). The proposed work showed the potential of using such modified gold nanoparticles generally for serological diagnosis. Improved specificity and reduced assay time can be archived in applying increased salt concentrations combined with decreased pH values (pH 5).

Keywords: gold nanoparticles, gold aggregation, serological diagnosis, protein A, lyme borreliosis

Procedia PDF Downloads 356
1312 Changing Misconceptions in Heat Transfer: A Problem Based Learning Approach for Engineering Students

Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza

Abstract:

This work has the purpose of study and incorporate Problem Based Learning (PBL) for engineering students, through the analysis of several thermal images of dwellings located in different geographical points of the Region de los Ríos, Chile. The students analyze how heat is transferred in and out of the houses and how is the relation between heat transfer and climatic conditions that affect each zone. As a result of this activity students are able to acquire significant learning in the unit of heat and temperature, and manage to reverse previous conceptual errors related with energy, temperature and heat. In addition, student are able to generate prototype solutions to increase thermal efficiency using low cost materials. Students make public their results in a report using scientific writing standards and in a science fair open to the entire university community. The methodology used to measure previous Conceptual Errors has been applying diagnostic tests with everyday questions that involve concepts of heat, temperature, work and energy, before the unit. After the unit the same evaluation is done in order that themselves are able to evidence the evolution in the construction of knowledge. As a result, we found that in the initial test, 90% of the students showed deficiencies in the concepts previously mentioned, and in the subsequent test 47% showed deficiencies, these percent ages differ between students who carry out the course for the first time and those who have performed this course previously in a traditional way. The methodology used to measure Significant Learning has been by comparing results in subsequent courses of thermodynamics among students who have received problem based learning and those who have received traditional training. We have observe that learning becomes meaningful when applied to the daily lives of students promoting internalization of knowledge and understanding through critical thinking.

Keywords: engineering students, heat flow, problem-based learning, thermal images

Procedia PDF Downloads 196
1311 Sedimentary Response to Coastal Defense Works in São Vicente Bay, São Paulo

Authors: L. C. Ansanelli, P. Alfredini

Abstract:

The article presents the evaluation of the effectiveness of two groins located at Gonzaguinha and Milionários Beaches, situated on the southeast coast of Brazil. The effectiveness of these coastal defense structures is evaluated in terms of sedimentary dynamics, which is one of the most important environmental processes to be assessed in coastal engineering studies. The applied method is based on the implementation of the Delft3D numerical model system tools. Delft3D-WAVE module was used for waves modelling, Delft3D-FLOW for hydrodynamic modelling and Delft3D-SED for sediment transport modelling. The calibration of the models was carried out in a way that the simulations adequately represent the region studied, evaluating improvements in the model elements with the use of statistical comparisons of similarity between the results and waves, currents and tides data recorded in the study area. Analysis of the maximum wave heights was carried to select the months with higher accumulated energy to implement these conditions in the engineering scenarios. The engineering studies were performed for two scenarios: 1) numerical simulation of the area considering only the two existing groins; 2) conception of breakwaters coupled at the ends of the existing groins, resulting in two “T” shaped structures. The sediment model showed that, for the simulated period, the area is affected by erosive processes and that the existing groins have little effectiveness in defending the coast in question. The implemented T structures showed some effectiveness in protecting the beaches against erosion and provided the recovery of the portion directly covered by it on the Milionários Beach. In order to complement this study, it is suggested the conception of further engineering scenarios that might recover other areas of the studied region.

Keywords: coastal engineering, coastal erosion, Sao Vicente bay, Delft3D, coastal engineering works

Procedia PDF Downloads 100
1310 Hydrodynamic Performance of a Moored Barge in Irregular Wave

Authors: Srinivasan Chandrasekaran, Shihas A. Khader

Abstract:

Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discuss the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in future studies. For the current study, 5000 seconds simulation is taken. The results represent wave-induced motion responses, mooring line tensions and identifies critical mooring lines.

Keywords: irregular wave, moored barge, time domain analysis, numerical simulation

Procedia PDF Downloads 223
1309 Organising Field Practicum for International Social Work Students through Creative Projects in the Community Sector in Elderly Care: An Evaluation of the Placement Experiences

Authors: Kalpana Goel

Abstract:

Australian social work schools are finding it difficult to find appropriate placements for the increasing number of international students enrolled in their Master of Social Work qualifying (MSWQ) programs. Anecdotally, it has been noticed that fewer social work students are ready to work with older people whose numbers are rising globally. An innovative and unique placement for international students enrolled in the MSWQ at one Australian university was organised in partnership with a community-based service working with older clients to meet two objectives: increasing the number of suitable placements for international students and preparing social work students to work with older people. Creative activities and projects were designed to provide meaningful engagement and experience in working with older people in the community. Students participated in a number of projects that were matched with their interest and capability in a 500-hour placement. The students were asked to complete an online survey after all work for the placement had been completed. The areas of assessment were: self-perceived change in perception towards age and older people, valued field placement experiences including reflective practice, knowledge and skill development, and constraints and challenges experienced in the placement. Findings revealed students’ increased level of confidence in applying social work theory to practice, developing effective communication and interpersonal skills, and use of innovation and creativity in preparing well-being plans with older adults. Challenges and constraints related to their limited English language ability and lack of cultural knowledge of the host society. It was recognised that extra support for these students and more planning in the beginning phase of placement are vital to placement success. Caution in matching students with clients of similar cultural background must be exercised to ensure that there is equity in task allocation and opportunities for wider experiences.

Keywords: field placement, international students, older people, social work

Procedia PDF Downloads 140
1308 Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa

Authors: Modreck Gomo

Abstract:

The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO3 hydrochemical facie while fractured-rock aquifer has a Ca-HCO3 facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca2+ in the Ca-HCO3 hydrochemical type to result in the Na-HCO3 hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted.

Keywords: alluvial aquifer, fractured-rock aquifer, groundwater quality, hydrogeochemical processes

Procedia PDF Downloads 164
1307 Embolism: How Changes in Xylem Sap Surface Tension Affect the Resistance against Hydraulic Failure

Authors: Adriano Losso, Birgit Dämon, Stefan Mayr

Abstract:

In vascular plants, water flows from roots to leaves in a metastable state, and even a small perturbation of the system can lead a sudden transition from the liquid to the vapor phase, resulting in xylem embolism (cavitation). Xylem embolism, induced by drought stress and/or freezing stress is caused by the aspiration of gaseous bubbles into xylem conduits from adjacent gas-filled compartments through pit membrane pores (‘air seeding’). At water potentials less negative than the threshold for air seeding, the surface tension (γ) stabilizes the air-water interface and thus prevents air from passing the pit pores. This hold is probably also true for conifers, where this effect occurs at the edge of the sealed torus. Accordingly, it was experimentally demonstrated that γ influences air seeding, but information on the relevance of this effect under field conditions is missing. In this study, we analyzed seasonal changes in γ of the xylem sap in two conifers growing at the alpine timberline (Picea abies and Pinus mugo). In addition, cut branches were perfused (40 min perfusion at 0.004 MPa) with different γ solutions (i.e. distilled and degassed water, 2, 5 and 15% (v/v) ethanol-water solution corresponding to a γ of 74, 65, 55 and 45 mN m-1, respectively) and their vulnerability to drought-induced embolism analyzed via the centrifuge technique (Cavitron). In both species, xylem sap γ changed considerably (ca. 53-67 and ca. 50-68 mN m-1 in P. abies and P. cembra, respectively) over the season. Branches perfused with low γ solutions showed reduced resistance against drought-induced embolism in both species. A significant linear relationship (P < 0.001) between P12, P50 and P88 (i.e. water potential at 12, 50 and 88% of the loss of conductivity) and xylem sap γ was found. Based on this correlation, a variation in P50 between -3.10 and -3.83 MPa (P. abies) and between -3.21 and -4.11 MPa (P. mugo) over the season could be estimated. Results demonstrate that changes in γ of the xylem sap can considerably influence a tree´s resistance to drought-induced embolism. They indicate that vulnerability analyses, normally conducted at a γ near that of pure water, might often underestimate vulnerabilities under field conditions. For studied timberline conifers, seasonal changes in γ might be especially relevant in winter, when frost drought and freezing stress can lead to an excessive embolism.

Keywords: conifers, Picea abies, Pinus mugo, timberline

Procedia PDF Downloads 262
1306 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams

Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname

Abstract:

Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.

Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams

Procedia PDF Downloads 96
1305 Aeroelastic Analysis of Nonlinear All-Movable Fin with Freeplay in Low-Speed

Authors: Laith K. Abbas, Xiaoting Rui, Pier Marzocca

Abstract:

Aerospace systems, generally speaking, are inherently nonlinear. These nonlinearities may modify the behavior of the system. However, nonlinearities in an aeroelastic system can be divided into structural and aerodynamic. Structural nonlinearities can be subdivided into distributed and concentrated ones. Distributed nonlinearities are spread over the whole structure representing the characteristic of materials and large motions. Concentrated nonlinearities act locally, representing loose of attachments, worn hinges of control surfaces, and the presence of external stores. The concentrated nonlinearities can be approximated by one of the classical structural nonlinearities, namely, cubic, free-play and hysteresis, or by a combination of these, for example, a free-play and a cubic one. Compressibility, aerodynamic heating, separated flows and turbulence effects are important aspects that result in nonlinear aerodynamic behavior. An issue related to the low-speed flutter and its catastrophic/benign character represented by Limit Cycle Oscillation (LCO) of all-movable fin, as well to their control is addressed in the present work. To the approach of this issue: (1) Quasi-Steady (QS) Theory and Computational Fluid Dynamics (CFD) of subsonic flow are implemented, (2) Flutter motion equations of a two-dimensional typical section with cubic nonlinear stiffness in the pitching direction and free play gap are established, (3) Uncoupled bending/torsion frequencies of the selected fin are computed using recently developed Transfer Matrix Method of Multibody System Dynamics (MSTMM), and (4) Time simulations are carried out to study the bifurcation behavior of the aeroelastic system. The main objective of this study is to investigate how the LCO and chaotic behavior are influenced by the coupled aeroelastic nonlinearities and intend to implement a control capability enabling one to control both the flutter boundary and its character. By this way, it may expand the operational envelop of the aerospace vehicle without failure.

Keywords: aeroelasticity, CFD, MSTMM, flutter, freeplay, fin

Procedia PDF Downloads 339
1304 Pilot Study of Determining the Impact of Surface Subsidence at The Intersection of Cave Mining with the Surface Using an Electrical Impedance Tomography

Authors: Ariungerel Jargal

Abstract:

: Cave mining is a bulk underground mining method, which allows large low-grade deposits to be mined underground. This method involves undermining the orebody to make it collapse under its own weight into a series of chambers from which the ore extracted. It is a useful technique to extend the life of large deposits previously mined by open pits, and it is a method increasingly proposed for new mines around the world. We plan to conduct a feasibility study using Electrical impedance tomography (EIT) technology to show how much subsidence there is at the intersection with the cave mining surface. EIT is an imaging technique which uses electrical measurements at electrodes attached on the body surface to yield a cross-sectional image of conductivity changes within the object. EIT has been developed in several different applications areas as a simpler, cheaper alternative to many other imaging methods. A low frequency current is injected between pairs of electrodes while voltage measurements are collected at all other electrode pairs. In the difference EIT, images are reconstructed of the change in conductivity distribution (σ) between the acquisition of the two sets of measurements. Image reconstruction in EIT requires the solution of an ill-conditioned nonlinear inverse problem on noisy data, typically requiring make simpler assumptions or regularization. It is noted that the ratio of current to voltage represents a complex value according to Ohm’s law, and that it is theoretically possible to re-express EIT. The results of the experiment were presented on the simulation, and it was concluded that it is possible to conduct further real experiments. Drill a certain number of holes in the top wall of the cave to attach the electrodes, flow a current through them, and measure and acquire the potential through these electrodes. Appropriate values should be selected depending on the distance between the holes, the frequency and duration of the measurements, the surface characteristics and the size of the study area using an EIT device.

Keywords: impedance tomography, cave mining, soil, EIT device

Procedia PDF Downloads 78
1303 Oily Sludge Bioremediation Pilot Plant Project, Nigeria

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: Site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment/bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance/quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water were observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.

Keywords: bioremediation, contaminated sediment, land farming, oily sludge, oil terminal

Procedia PDF Downloads 422
1302 3D Codes for Unsteady Interaction Problems of Continuous Mechanics in Euler Variables

Authors: M. Abuziarov

Abstract:

The designed complex is intended for the numerical simulation of fast dynamic processes of interaction of heterogeneous environments susceptible to the significant formability. The main challenges in solving such problems are associated with the construction of the numerical meshes. Currently, there are two basic approaches to solve this problem. One is using of Lagrangian or Lagrangian Eulerian grid associated with the boundaries of media and the second is associated with the fixed Eulerian mesh, boundary cells of which cut boundaries of the environment medium and requires the calculation of these cut volumes. Both approaches require the complex grid generators and significant time for preparing the code’s data for simulation. In this codes these problems are solved using two grids, regular fixed and mobile local Euler Lagrange - Eulerian (ALE approach) accompanying the contact and free boundaries, the surfaces of shock waves and phase transitions, and other possible features of solutions, with mutual interpolation of integrated parameters. For modeling of both liquids and gases, and deformable solids the Godunov scheme of increased accuracy is used in Lagrangian - Eulerian variables, the same for the Euler equations and for the Euler- Cauchy, describing the deformation of the solid. The increased accuracy of the scheme is achieved by using 3D spatial time dependent solution of the discontinuity problem (3D space time dependent Riemann's Problem solver). The same solution is used to calculate the interaction at the liquid-solid surface (Fluid Structure Interaction problem). The codes does not require complex 3D mesh generators, only the surfaces of the calculating objects as the STL files created by means of engineering graphics are given by the user, which greatly simplifies the preparing the task and makes it convenient to use directly by the designer at the design stage. The results of the test solutions and applications related to the generation and extension of the detonation and shock waves, loading the constructions are presented.

Keywords: fluid structure interaction, Riemann's solver, Euler variables, 3D codes

Procedia PDF Downloads 408
1301 Detecting Natural Fractures and Modeling Them to Optimize Field Development Plan in Libyan Deep Sandstone Reservoir (Case Study)

Authors: Tarek Duzan

Abstract:

Fractures are a fundamental property of most reservoirs. Despite their abundance, they remain difficult to detect and quantify. The most effective characterization of fractured reservoirs is accomplished by integrating geological, geophysical, and engineering data. Detection of fractures and defines their relative contribution is crucial in the early stages of exploration and later in the production of any field. Because fractures could completely change our thoughts, efforts, and planning to produce a specific field properly. From the structural point of view, all reservoirs are fractured to some point of extent. North Gialo field is thought to be a naturally fractured reservoir to some extent. Historically, natural fractured reservoirs are more complicated in terms of their exploration and production efforts, and most geologists tend to deny the presence of fractures as an effective variable. Our aim in this paper is to determine the degree of fracturing, and consequently, our evaluation and planning can be done properly and efficiently from day one. The challenging part in this field is that there is no enough data and straightforward well testing that can let us completely comfortable with the idea of fracturing; however, we cannot ignore the fractures completely. Logging images, available well testing, and limited core studies are our tools in this stage to evaluate, model, and predict possible fracture effects in this reservoir. The aims of this study are both fundamental and practical—to improve the prediction and diagnosis of natural-fracture attributes in N. Gialo hydrocarbon reservoirs and accurately simulate their influence on production. Moreover, the production of this field comes from 2-phase plan; a self depletion of oil and then gas injection period for pressure maintenance and increasing ultimate recovery factor. Therefore, well understanding of fracturing network is essential before proceeding with the targeted plan. New analytical methods will lead to more realistic characterization of fractured and faulted reservoir rocks. These methods will produce data that can enhance well test and seismic interpretations, and that can readily be used in reservoir simulators.

Keywords: natural fracture, sandstone reservoir, geological, geophysical, and engineering data

Procedia PDF Downloads 66
1300 Recovery and Identification of Phenolic Acids in Honey Samples from Different Floral Sources of Pakistan Having Antimicrobial Activity

Authors: Samiyah Tasleem, Muhammad Abdul Haq, Syed Baqir Shyum Naqvi, Muhammad Abid Husnain, Sajjad Haider Naqvi

Abstract:

The objective of the present study was: a) to investigate the antimicrobial activity of honey samples of different floral sources of Pakistan, b) to recover the phenolic acids in them as a possible contributing factor of antimicrobial activity. Six honey samples from different floral sources, namely: Trachysperm copticum, Acacia species, Helianthus annuus, Carissa opaca, Zizyphus and Magnifera indica were used. The antimicrobial activity was investigated by the disc diffusion method against eight freshly isolated clinical isolates (Staphylococci aureus, Staphylococci epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris and Candida albicans). Antimicrobial activity of honey was compared with five commercial antibiotics, namely: doxycycline (DO-30ug/mL), oxytetracycline (OT-30ug/mL), clarithromycin (CLR–15ug/mL), moxifloxacin (MXF-5ug/mL) and nystatin (NT – 100 UT). The fractions responsible for antimicrobial activity were extracted using ethyl acetate. Solid phase extraction (SPE) was used to recover the phenolic acids of honey samples. Identification was carried out via High-Performance Liquid Chromatography (HPLC). The results indicated that antimicrobial activity was present in all honey samples and found comparable to the antibiotics used in the study. In the microbiological assay, the ethyl acetate honey extract was found to exhibit a very promising antimicrobial activity against all the microorganisms tested, indicating the existence of phenolic compounds. Six phenolic acids, namely: gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids were identified besides some unknown substance by HPLC. In conclusion, Pakistani honey samples showed a broad spectrum antibacterial and promising antifungal activity. Identification of six different phenolic acids showed that Pakistani honey samples are rich sources of phenolic compounds that could be the contributing factor of antimicrobial activity.

Keywords: Pakistani honey, antimicrobial activity, Phenolic acids eg.gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids

Procedia PDF Downloads 513
1299 LCA and LCC for the Evaluation of Sustainability of Rapeseed, Giant Reed, and Poplar Cultivation

Authors: Alessandro Suardi, Rodolfo Picchio, Domenico Coaloa, Maria Bonaventura Forleo, Nadia Palmieri, Luigi Pari

Abstract:

The reconversion process of the Italian sugar supply chain to bio-energy supply chains, as a result of the 2006 Sugar CMO reform, have involved research to define the best logistics, the most adapted energy crops for the Italian territory and their sustainability. Rapeseed (Brassica napus L.), Giant reed (Arundo donax L.) and Poplar (Poplar ssp.) are energy crops considered strategic for the development of Italian energy supply-chains. This study analyzed the environmental and the economic impacts on the farm level of these three energy crops. The environmental assessment included six farming units, two per crop, which were extracted from a sample of 251 rapeseed farm units (2751 ha), 7 giant reed farm units (7.8 ha), and 91 poplar farm units (440 ha) using a statistical multivariate analysis. Life Cycle Assessment (LCA) research method has been used to evaluate and compare the sustainability of the agricultural phases of the crops studied. The impact analyses have been performed at mid-point and end-point levels. The results of the analysis shown that the fertilization, is the major source of environmental impact of the agricultural phase due to the production of the fertilizers and the soil emissions of GHG following the treatment. The perennial energy crops studied (Arundo donax L., Poplar ssp.) were environmentally more sustainable if compared with the annual crop (Brassica napus L.) for all the impact categories at mid-point and end-point levels analyzed. The most relevant impact category influenced by the agricultural process result the fossil depletion, mainly due to the fossil fuels consumed during the mineral fertilizers production (urea). Human health was the most affected damage category at the end point level. Poplar result the energy crop with the best environmental performance for the Italian territory, in the distribution areas most suitable for its cultivation.

Keywords: LCA, energy crops, rapeseed, giant reed, poplar

Procedia PDF Downloads 445
1298 Effects of Small Impoundments on Leaf Litter Decomposition and Methane Derived Carbon in the Benthic Foodweb in Streams

Authors: John Gichimu Mbaka, Jan Helmrich Martin von Baumbach, Celia Somlai, Denis Köpfer, Andreas Maeck, Andreas Lorke, Ralf Schäfer

Abstract:

Leaf litter decomposition is an important process providing energy to biotic communities. Additionally, methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs.Flow regulation and dams can strongly alter freshwater ecosystems, but little is known about the effect of small impoundments on leaf litter decomposition and methane derived carbon in streams. In this study, we tested the effect of small water storage impoundments on leaf litter decomposition rates and methane derived carbon. Leaf litter decomposition rates were assessed by comparing treatment sites located close to nine impoundments (Rheinland Pfalz state, Germany) and reference sites located far away from the impoundments.CH4 concentrations were measured in eleven impoundments and correlated with the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae). Leaf litter break down rates were significantly lower in study sites located immediately above the impoundments, especially associated with a reduction in the abundance of shredders. Chironomini larvae had the lower mean δ13C values (‒29.2 to ‒25.5 ‰), than Tanypodinae larvae (‒26.9 to ‒25.3 ‰).No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p> 0.05).Mean δ13C values of chironomid larvae (mean: ‒26.8‰, range: ‒ 29.2‰ to ‒ 25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: ‒28.4‰, range: ‒ 29.3‰ to ‒ 27.1‰) and tree leaf litter (mean: ‒29.8 ‰, range: ‒ 30.5‰ to ‒ 29.1‰). In conclusion, this study demonstrates that small impoundments may have a negative effect on leaf litter decomposition in forest streams and that CH4 has limited influence on the benthic food web in stream impoundments.

Keywords: river functioning, chironomids, Alder tree, stable isotopes, methane oxidation, shredder

Procedia PDF Downloads 698